These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23912063)

  • 1. Pairing fluctuation ac conductivity of disordered thin films.
    Petković A; Vinokur VM
    J Phys Condens Matter; 2013 Sep; 25(35):355701. PubMed ID: 23912063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluctuation conductivity of thin films and nanowires near a parallel-field-tuned superconducting quantum phase transition.
    Lopatin AV; Shah N; Vinokur VM
    Phys Rev Lett; 2005 Jan; 94(3):037003. PubMed ID: 15698309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum-fluctuation effects in the transport properties of ultrathin films of disordered superconductors above the paramagnetic limit.
    Khodas M; Levchenko A; Catelani G
    Phys Rev Lett; 2012 Jun; 108(25):257004. PubMed ID: 23004644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DC bias-dependent shift of the resonance frequencies in BST thin film membranes.
    Noeth A; Yamada T; Sherman VO; Muralt P; Tagantsev AK; Setter N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2487-92. PubMed ID: 18276543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study.
    Laref S; Cao J; Asaduzzaman A; Runge K; Deymier P; Ziolkowski RW; Miyawaki M; Muralidharan K
    Opt Express; 2013 May; 21(10):11827-38. PubMed ID: 23736404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization and pair breaking parameter in superconducting molybdenum nitride thin films.
    Tsuneoka T; Makise K; Maeda S; Shinozaki B; Ichikawa F
    J Phys Condens Matter; 2017 Jan; 29(1):015701. PubMed ID: 27830668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proposal for Plasmon Spectroscopy of Fluctuations in Low-Dimensional Superconductors.
    Kovalev VM; Savenko IG
    Phys Rev Lett; 2020 May; 124(20):207002. PubMed ID: 32501098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric spectroscopy of some heteronuclear amino alcohol complexes.
    Masoud MS; Shaker MA; Ali AE
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Sep; 65(1):127-32. PubMed ID: 16458054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AC conductivity of a niobium thin film in a swept magnetic field.
    Tsindlekht MI; Genkin VM; Gazi S; Chromik S
    J Phys Condens Matter; 2013 Feb; 25(8):085701. PubMed ID: 23360905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a bias electric field on the structure and dielectric response of the ferroelectric smectic-A liquid crystal in thin planar cells.
    Gornik K; Čepič M; Vaupotič N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012501. PubMed ID: 24580240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and theoretical study of AC electrical conduction mechanisms of semicrystalline parylene C thin films.
    Kahouli A; Sylvestre A; Jomni F; Yangui B; Legrand J
    J Phys Chem A; 2012 Jan; 116(3):1051-8. PubMed ID: 22191786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AC conductivity of a quantum Hall line junction.
    Agarwal A; Sen D
    J Phys Condens Matter; 2009 Sep; 21(37):375601. PubMed ID: 21832349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave spectroscopy evidence of superconducting pairing in the magnetic-field-induced metallic state of InO(x) films at zero temperature.
    Liu W; Pan L; Wen J; Kim M; Sambandamurthy G; Armitage NP
    Phys Rev Lett; 2013 Aug; 111(6):067003. PubMed ID: 23971604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron emission from ferroelectric thin films enhanced by the presence of 90 degree ferroelectric domains.
    Suchaneck G; Vidyarthi VS; Gerlach G; Solnyshkin AV; Kislova IL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2555-61. PubMed ID: 18276554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband method for precise microwave spectroscopy of superconducting thin films near the critical temperature.
    Kitano H; Ohashi T; Maeda A
    Rev Sci Instrum; 2008 Jul; 79(7):074701. PubMed ID: 18681723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broad-band conductivity and dielectric spectroscopy of composites of multiwalled carbon nanotubes and poly(ethylene terephthalate) around their low percolation threshold.
    Nuzhnyy D; Savinov M; Bovtun V; Kempa M; Petzelt J; Mayoral B; McNally T
    Nanotechnology; 2013 Feb; 24(5):055707. PubMed ID: 23324357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excess conductivity and Berezinskii-Kosterlitz-Thouless transition in superconducting FeSe thin films.
    Schneider R; Zaitsev AG; Fuchs D; von Löhneysen H
    J Phys Condens Matter; 2014 Nov; 26(45):455701. PubMed ID: 25319094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistive phase transition of the superconducting Si(111)-(7×3)-In surface.
    Uchihashi T; Mishra P; Nakayama T
    Nanoscale Res Lett; 2013 Apr; 8(1):167. PubMed ID: 23578253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic transport in graphitic nanoribbon films.
    Behnam A; Johnson JL; An Y; Biswas A; Ural A
    ACS Nano; 2011 Mar; 5(3):1617-22. PubMed ID: 21341738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peculiarities of pseudogap in Y
    Solovjov AL; Omelchenko LV; Petrenko EV; Vovk RV; Khotkevych VV; Chroneos A
    Sci Rep; 2019 Dec; 9(1):20424. PubMed ID: 31892715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.