These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23912078)

  • 1. Performance of ultraviolet photocatalytic oxidation for indoor air applications: systematic experimental evaluation.
    Zhong L; Haghighat F; Lee CS; Lakdawala N
    J Hazard Mater; 2013 Oct; 261():130-8. PubMed ID: 23912078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications.
    Hodgson AT; Destaillats H; Sullivan DP; Fisk WJ
    Indoor Air; 2007 Aug; 17(4):305-16. PubMed ID: 17661927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a new photocatalytic oxidation air filter for aircraft cabin.
    Ginestet A; Pugnet D; Rowley J; Bull K; Yeomans H
    Indoor Air; 2005 Oct; 15(5):326-34. PubMed ID: 16108905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Health effect of volatile aldehyde compounds in photocatalytic oxidation of aromatics compounds].
    Zhao WR; Liao QW; Yang YN; Dai JS
    Huan Jing Ke Xue; 2013 May; 34(5):1871-6. PubMed ID: 23914541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of ozone on the removal effectiveness of photocatalysis on indoor gaseous biogenic volatile organic compounds.
    Yu KP; Lee GW; Huang GH
    J Air Waste Manag Assoc; 2010 Jul; 60(7):820-9. PubMed ID: 20681429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application.
    Jo WK; Park KH
    Chemosphere; 2004 Nov; 57(7):555-65. PubMed ID: 15488917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of ultraviolet light-emitting diode photocatalysis to remove volatile organic compounds from indoor air.
    Sharmin R; Ray MB
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1032-9. PubMed ID: 23019817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic oxidation of VOCs over Mn/TiO
    Shu Y; Xu Y; Huang H; Ji J; Liang S; Wu M; Leung DYC
    Chemosphere; 2018 Oct; 208():550-558. PubMed ID: 29890493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VUV photolysis of naphthalene in indoor air: Intermediates, pathways, and health risk.
    Zhao W; Yang Y; Dai J; Liu F; Wang Y
    Chemosphere; 2013 May; 91(7):1002-8. PubMed ID: 23461839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of photocatalytic HEPA filter on microorganism removal.
    Chuaybamroong P; Chotigawin R; Supothina S; Sribenjalux P; Larpkiattaworn S; Wu CY
    Indoor Air; 2010 Jun; 20(3):246-54. PubMed ID: 20573124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect.
    Huang Y; Ho SS; Lu Y; Niu R; Xu L; Cao J; Lee S
    Molecules; 2016 Jan; 21(1):56. PubMed ID: 26742024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds.
    Jo WK; Kim JT
    J Hazard Mater; 2009 May; 164(1):360-6. PubMed ID: 18809252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption performance of titanium dioxide (TiO2) coated air filters for volatile organic compounds.
    Zhong L; Lee CS; Haghighat F
    J Hazard Mater; 2012 Dec; 243():340-9. PubMed ID: 23158691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel insight into VOC removal performance of photocatalytic oxidation reactors.
    Mo J; Zhang Y; Yang R
    Indoor Air; 2005 Aug; 15(4):291-300. PubMed ID: 15982276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removing volatile organic compounds in cooking fume by nano-sized TiO
    Li YH; Cheng SW; Yuan CS; Lai TF; Hung CH
    Chemosphere; 2018 Oct; 208():808-817. PubMed ID: 29906755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of gaseous volatile organic compounds via vacuum ultraviolet photodegradation: Review and prospect.
    Sun X; Li C; Yu B; Wang J; Wang W
    J Environ Sci (China); 2023 Mar; 125():427-442. PubMed ID: 36375926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic oxidation of indoor toluene: process risk analysis and influence of relative humidity, photocatalysts, and VUV irradiation.
    Zhao W; Dai J; Liu F; Bao J; Wang Y; Yang Y; Yang Y; Zhao D
    Sci Total Environ; 2012 Nov; 438():201-9. PubMed ID: 23000545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of organic gases using ultrasonic mist generated from TiO2 suspension.
    Sekiguchi K; Noshiroya D; Handa M; Yamamoto K; Sakamoto K; Namiki N
    Chemosphere; 2010 Sep; 81(1):33-8. PubMed ID: 20705323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of photocatalytic filter for removing volatile organic compounds in the heating, ventilation, and air conditioning system.
    Yu KP; Lee GW; Huang WM; Wu CC; Lou CL; Yang S
    J Air Waste Manag Assoc; 2006 May; 56(5):666-74. PubMed ID: 16739804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultraviolet photocatalytic oxidation technology for indoor volatile organic compound removal: A critical review with particular focus on byproduct formation and modeling.
    Wu J; Alipouri Y; Luo H; Zhong L
    J Hazard Mater; 2022 Jan; 421():126766. PubMed ID: 34396962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.