These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 23912107)

  • 1. Low-frequency 1/f noise in graphene devices.
    Balandin AA
    Nat Nanotechnol; 2013 Aug; 8(8):549-55. PubMed ID: 23912107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nature of the 1/
    Rehman A; Delgado Notario JA; Salvador Sanchez J; Meziani YM; Cywiński G; Knap W; Balandin AA; Levinshtein M; Rumyantsev S
    Nanoscale; 2022 May; 14(19):7242-7249. PubMed ID: 35514294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong suppression of electrical noise in bilayer graphene nanodevices.
    Lin YM; Avouris P
    Nano Lett; 2008 Aug; 8(8):2119-25. PubMed ID: 18298094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise in Graphene Superlattices Grown on Hexagonal Boron Nitride.
    Li X; Lu X; Li T; Yang W; Fang J; Zhang G; Wu Y
    ACS Nano; 2015 Nov; 9(11):11382-8. PubMed ID: 26435195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise Analysis of Monolayer Graphene Nanopores.
    Zhang ZY; Deng YS; Tian HB; Yan H; Cui HL; Wang DQ
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30200591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the bias dependence of low frequency noise in single layer graphene FETs.
    Mavredakis N; Garcia Cortadella R; Bonaccini Calia A; Garrido JA; Jiménez D
    Nanoscale; 2018 Aug; 10(31):14947-14956. PubMed ID: 30047555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical and Low Frequency Noise Characterization of Graphene Chemical Sensor Devices Having Different Geometries.
    Nah J; Perkins FK; Lock EH; Nath A; Boyd A; Myers-Ward RL; Gaskill DK; Osofsky M; Rao MV
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable 1/
    Tian M; Hu Q; Gu C; Xiong X; Zhang Z; Li X; Wu Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17686-17690. PubMed ID: 32189495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene: an emerging electronic material.
    Weiss NO; Zhou H; Liao L; Liu Y; Jiang S; Huang Y; Duan X
    Adv Mater; 2012 Nov; 24(43):5782-825. PubMed ID: 22930422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1/f noise in graphene nanopores.
    Heerema SJ; Schneider GF; Rozemuller M; Vicarelli L; Zandbergen HW; Dekker C
    Nanotechnology; 2015 Feb; 26(7):074001. PubMed ID: 25629930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunability of 1/f Noise at Multiple Dirac Cones in hBN Encapsulated Graphene Devices.
    Kumar C; Kuiri M; Jung J; Das T; Das A
    Nano Lett; 2016 Feb; 16(2):1042-9. PubMed ID: 26765292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Frequency Noise in Graphene Tunnel Junctions.
    Puczkarski P; Wu Q; Sadeghi H; Hou S; Karimi A; Sheng Y; Warner JH; Lambert CJ; Briggs GAD; Mol JA
    ACS Nano; 2018 Sep; 12(9):9451-9460. PubMed ID: 30114902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carrier-Number-Fluctuation Induced Ultralow 1/f Noise Level in Top-Gated Graphene Field Effect Transistor.
    Peng S; Jin Z; Zhang D; Shi J; Mao D; Wang S; Yu G
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):6661-6665. PubMed ID: 28176524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise and its reduction in graphene based nanopore devices.
    Kumar A; Park KB; Kim HM; Kim KB
    Nanotechnology; 2013 Dec; 24(49):495503. PubMed ID: 24240186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosensing near the neutrality point of graphene.
    Fu W; Feng L; Panaitov G; Kireev D; Mayer D; Offenhäusser A; Krause HJ
    Sci Adv; 2017 Oct; 3(10):e1701247. PubMed ID: 29075669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flicker Noise in Resistive Gas Sensors-Measurement Setups and Applications for Enhanced Gas Sensing.
    Smulko J; Scandurra G; Drozdowska K; Kwiatkowski A; Ciofi C; Wen H
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suspending effect on low-frequency charge noise in graphene quantum dot.
    Song XX; Li HO; You J; Han TY; Cao G; Tu T; Xiao M; Guo GC; Jiang HW; Guo GP
    Sci Rep; 2015 Jan; 5():8142. PubMed ID: 25634250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene field effect transistor scaling for ultra-low-noise sensors.
    Tran NAM; Fakih I; Durnan O; Hu A; Aygar AM; Napal I; Centeno A; Zurutuza A; Reulet B; Szkopek T
    Nanotechnology; 2021 Jan; 32(4):045502. PubMed ID: 33049728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the Thermal Noise Limit of Graphene Biotransistors.
    Crosser MS; Brown MA; McEuen PL; Minot ED
    Nano Lett; 2015 Aug; 15(8):5404-7. PubMed ID: 26176844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical Low-Frequency 1/
    Kamada M; Laitinen A; Zeng W; Will M; Sarkar J; Tappura K; Seppä H; Hakonen P
    Nano Lett; 2021 Sep; 21(18):7637-7643. PubMed ID: 34491764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.