These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 23912217)
1. Kinetic energy scavenging in a prosthetic foot using a fluidic system. Pylatiuk C; Metzger F; Wiegand R; Bretthauer G Biomed Tech (Berl); 2013 Aug; 58(4):353-8. PubMed ID: 23912217 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of a prosthetic swing-phase controller with electrical power generation. Andrysek J; Liang T; Steinnagel B IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):390-6. PubMed ID: 19497830 [TBL] [Abstract][Full Text] [Related]
3. The effect that energy storage and return feet have on the propulsion of the body: a pilot study. Crimin A; McGarry A; Harris EJ; Solomonidis SE Proc Inst Mech Eng H; 2014 Sep; 228(9):908-15. PubMed ID: 25172179 [TBL] [Abstract][Full Text] [Related]
4. Energy storing property of so-called energy-storing prosthetic feet. Ehara Y; Beppu M; Nomura S; Kunimi Y; Takahashi S Arch Phys Med Rehabil; 1993 Jan; 74(1):68-72. PubMed ID: 8420524 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees. Graham LE; Datta D; Heller B; Howitt J; Pros D Arch Phys Med Rehabil; 2007 Jun; 88(6):801-6. PubMed ID: 17532907 [TBL] [Abstract][Full Text] [Related]
6. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Fey NP; Klute GK; Neptune RR Clin Biomech (Bristol); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999 [TBL] [Abstract][Full Text] [Related]
10. Mechanical energy and effective foot mass during impact loading of walking and running. Chi KJ; Schmitt D J Biomech; 2005 Jul; 38(7):1387-95. PubMed ID: 15922749 [TBL] [Abstract][Full Text] [Related]
11. An electromechanical swing-phase-controlled prosthetic knee joint for conversion of physiological energy to electrical energy: feasibility study. Andrysek J; Chau G IEEE Trans Biomed Eng; 2007 Dec; 54(12):2276-83. PubMed ID: 18075044 [TBL] [Abstract][Full Text] [Related]
12. Outdoor dynamic subject-specific evaluation of internal stresses in the residual limb: hydraulic energy-stored prosthetic foot compared to conventional energy-stored prosthetic feet. Portnoy S; Kristal A; Gefen A; Siev-Ner I Gait Posture; 2012 Jan; 35(1):121-5. PubMed ID: 21955382 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of oxygen consumption for conventional and energy-storing prosthetic feet in transfemoral amputees. Graham LE; Datta D; Heller B; Howitt J Clin Rehabil; 2008; 22(10-11):896-901. PubMed ID: 18955421 [TBL] [Abstract][Full Text] [Related]
14. Mechanical properties of prosthetic limbs: adapting to the patient. Klute GK; Kallfelz CF; Czerniecki JM J Rehabil Res Dev; 2001; 38(3):299-307. PubMed ID: 11440261 [TBL] [Abstract][Full Text] [Related]
15. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. Bai P; Zhu G; Lin ZH; Jing Q; Chen J; Zhang G; Ma J; Wang ZL ACS Nano; 2013 Apr; 7(4):3713-9. PubMed ID: 23484470 [TBL] [Abstract][Full Text] [Related]
16. Mechanical efficiency during gait of adults with transtibial amputation: a pilot study comparing the SACH, Seattle, and Golden-Ankle prosthetic feet. Prince F; Winter DA; Sjonnensen G; Powell C; Wheeldon RK J Rehabil Res Dev; 1998 Jun; 35(2):177-85. PubMed ID: 9651889 [TBL] [Abstract][Full Text] [Related]
17. The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking. Ventura JD; Klute GK; Neptune RR Gait Posture; 2011 Feb; 33(2):220-6. PubMed ID: 21145747 [TBL] [Abstract][Full Text] [Related]
18. Forefoot angle determines duration and amplitude of pronation during walking. Monaghan GM; Lewis CL; Hsu WH; Saltzman E; Hamill J; Holt KG Gait Posture; 2013 May; 38(1):8-13. PubMed ID: 23117096 [TBL] [Abstract][Full Text] [Related]
19. The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users. Hansen AH; Meier MR; Sessoms PH; Childress DS Prosthet Orthot Int; 2006 Dec; 30(3):286-99. PubMed ID: 17162519 [TBL] [Abstract][Full Text] [Related]
20. Variability of kinetic variables during gait in unilateral transtibial amputees. Svoboda Z; Janura M; Cabell L; Elfmark M Prosthet Orthot Int; 2012 Jun; 36(2):225-30. PubMed ID: 22440580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]