BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23912226)

  • 1. The role of tumor necrosis factor-α in the pathogenesis of vitiligo.
    Camara-Lemarroy CR; Salas-Alanis JC
    Am J Clin Dermatol; 2013 Oct; 14(5):343-50. PubMed ID: 23912226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A patient with psoriasis and vitiligo treated with etanercept.
    Campanati A; Giuliodori K; Ganzetti G; Liberati G; Offidani AM
    Am J Clin Dermatol; 2010; 11 Suppl 1():46-8. PubMed ID: 20586509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel approaches to vitiligo treatment via modulation of mTOR and NF-κB pathways in human skin melanocytes.
    Wan J; Lin F; Zhang W; Xu A; DeGiorgis J; Lu H; Wan Y
    Int J Biol Sci; 2017; 13(3):391-400. PubMed ID: 28367103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor Necrosis Factor-alpha affects melanocyte survival and melanin synthesis via multiple pathways in vitiligo.
    Singh M; Mansuri MS; Kadam A; Palit SP; Dwivedi M; Laddha NC; Begum R
    Cytokine; 2021 Apr; 140():155432. PubMed ID: 33517195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoimmunity as an aetiological factor in vitiligo.
    Rezaei N; Gavalas NG; Weetman AP; Kemp EH
    J Eur Acad Dermatol Venereol; 2007 Aug; 21(7):865-76. PubMed ID: 17658994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of interferon-gamma and tumor necrosis factor alpha polymorphisms with susceptibility to vitiligo in Iranian patients.
    Namian AM; Shahbaz S; Salmanpoor R; Namazi MR; Dehghani F; Kamali-Sarvestani E
    Arch Dermatol Res; 2009 Jan; 301(1):21-5. PubMed ID: 18820938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic fibroblast growth factor and tumour necrosis factor alpha in vitiligo and other hypopigmented disorders: suggestive possible therapeutic targets.
    Seif El Nasr H; Shaker OG; Fawzi MM; El-Hanafi G
    J Eur Acad Dermatol Venereol; 2013 Jan; 27(1):103-8. PubMed ID: 22151832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of anti-tumor necrosis factor agents: a possible therapy for vitiligo.
    Lv Y; Li Q; Wang L; Gao T
    Med Hypotheses; 2009 May; 72(5):546-7. PubMed ID: 19201101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelin-1 enhances the proliferation of normal human melanocytes in a paradoxical manner from the TNF-α-inhibited condition, but tacrolimus promotes exclusively the cellular migration without proliferation: a proposed action mechanism for combination therapy of phototherapy and topical tacrolimus in vitiligo treatment.
    Lee KY; Jeon SY; Hong JW; Choi KW; Lee CY; Choi SJ; Kim JH; Song KH; Kim KH
    J Eur Acad Dermatol Venereol; 2013 May; 27(5):609-16. PubMed ID: 22404745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased Tumor Necrosis Factor (TNF)-α and its promoter polymorphisms correlate with disease progression and higher susceptibility towards vitiligo.
    Laddha NC; Dwivedi M; Begum R
    PLoS One; 2012 Dec; 7(12):e52298. PubMed ID: 23284977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lack of association with TNF-alpha-308 promoter polymorphism in patients with vitiligo.
    Yazici AC; Erdal ME; Kaya TI; Ikizoglu G; Savasoglu K; Camdeviren H; Tursen U
    Arch Dermatol Res; 2006 Jun; 298(1):46-9. PubMed ID: 16691430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo.
    Boukhedouni N; Martins C; Darrigade AS; Drullion C; Rambert J; Barrault C; Garnier J; Jacquemin C; Thiolat D; Lucchese F; Morel F; Ezzedine K; Taieb A; Bernard FX; Seneschal J; Boniface K
    JCI Insight; 2020 Jun; 5(11):. PubMed ID: 32369451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topical tacrolimus therapy for vitiligo: therapeutic responses and skin messenger RNA expression of proinflammatory cytokines.
    Grimes PE; Morris R; Avaniss-Aghajani E; Soriano T; Meraz M; Metzger A
    J Am Acad Dermatol; 2004 Jul; 51(1):52-61. PubMed ID: 15243524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitiligo: pathogenetic hypotheses and targets for current therapies.
    Guerra L; Dellambra E; Brescia S; Raskovic D
    Curr Drug Metab; 2010 Jun; 11(5):451-67. PubMed ID: 20540698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combination of tumour necrosis factor-α -308A and interleukin-10 -1082G gene polymorphisms and increased serum levels of related cytokines: susceptibility to vitiligo.
    Aydıngöz IE; Kanmaz-Özer M; Gedikbaşi A; Vural P; Doğru-Abbasoğlu S; Uysal M
    Clin Exp Dermatol; 2015 Jan; 40(1):71-7. PubMed ID: 25283497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytokines: the yin and yang of vitiligo pathogenesis.
    Singh M; Kotnis A; Jadeja SD; Mondal A; Mansuri MS; Begum R
    Expert Rev Clin Immunol; 2019 Feb; 15(2):177-188. PubMed ID: 30462555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitiligo: pathomechanisms and genetic polymorphism of susceptible genes.
    Shajil EM; Chatterjee S; Agrawal D; Bagchi T; Begum R
    Indian J Exp Biol; 2006 Jul; 44(7):526-39. PubMed ID: 16872041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into immune mechanisms of vitiligo.
    Boniface K; Taïeb A; Seneschal J
    G Ital Dermatol Venereol; 2016 Feb; 151(1):44-54. PubMed ID: 26512930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD8+ T cells from vitiligo perilesional margins induce autologous melanocyte apoptosis.
    Wu J; Zhou M; Wan Y; Xu A
    Mol Med Rep; 2013 Jan; 7(1):237-41. PubMed ID: 23042234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational Research in Vitiligo.
    Katz EL; Harris JE
    Front Immunol; 2021; 12():624517. PubMed ID: 33737930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.