BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 23912279)

  • 1. Molecular basis for N-terminal acetylation by the heterodimeric NatA complex.
    Liszczak G; Goldberg JM; Foyn H; Petersson EJ; Arnesen T; Marmorstein R
    Nat Struct Mol Biol; 2013 Sep; 20(9):1098-105. PubMed ID: 23912279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the interaction between NatA and the ribosome for co-translational protein acetylation.
    Magin RS; Deng S; Zhang H; Cooperman B; Marmorstein R
    PLoS One; 2017; 12(10):e0186278. PubMed ID: 29016658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and Mechanism of Acetylation by the N-Terminal Dual Enzyme NatA/Naa50 Complex.
    Deng S; Magin RS; Wei X; Pan B; Petersson EJ; Marmorstein R
    Structure; 2019 Jul; 27(7):1057-1070.e4. PubMed ID: 31155310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog.
    Liszczak G; Marmorstein R
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14652-7. PubMed ID: 23959863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of HypK regulating N-terminal acetylation by the NatA complex.
    Weyer FA; Gumiero A; Lapouge K; Bange G; Kopp J; Sinning I
    Nat Commun; 2017 Jun; 8():15726. PubMed ID: 28585574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel human NatA Nalpha-terminal acetyltransferase complex: hNaa16p-hNaa10p (hNat2-hArd1).
    Arnesen T; Gromyko D; Kagabo D; Betts MJ; Starheim KK; Varhaug JE; Anderson D; Lillehaug JR
    BMC Biochem; 2009 May; 10():15. PubMed ID: 19480662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity.
    Evjenth R; Hole K; Karlsen OA; Ziegler M; Arnesen T; Lillehaug JR
    J Biol Chem; 2009 Nov; 284(45):31122-9. PubMed ID: 19744929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase.
    Van Damme P; Evjenth R; Foyn H; Demeyer K; De Bock PJ; Lillehaug JR; Vandekerckhove J; Arnesen T; Gevaert K
    Mol Cell Proteomics; 2011 May; 10(5):M110.004580. PubMed ID: 21383206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel NAA10 p.(R83H) variant with impaired acetyltransferase activity identified in two boys with ID and microcephaly.
    Ree R; Geithus AS; Tørring PM; Sørensen KP; Damkjær M; ; Lynch SA; Arnesen T
    BMC Med Genet; 2019 Jun; 20(1):101. PubMed ID: 31174490
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    McTiernan N; Darbakk C; Ree R; Arnesen T
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charting the N-Terminal Acetylome: A Comprehensive Map of Human NatA Substrates.
    Van Damme P
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for substrate-specific acetylation of Nα-acetyltransferase Ard1 from Sulfolobus solfataricus.
    Chang YY; Hsu CH
    Sci Rep; 2015 Mar; 5():8673. PubMed ID: 25728374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation.
    Knorr AG; Schmidt C; Tesina P; Berninghausen O; Becker T; Beatrix B; Beckmann R
    Nat Struct Mol Biol; 2019 Jan; 26(1):35-39. PubMed ID: 30559462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant.
    Van Damme P; Støve SI; Glomnes N; Gevaert K; Arnesen T
    Mol Cell Proteomics; 2014 Aug; 13(8):2031-41. PubMed ID: 24408909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae.
    Varland S; Arnesen T
    BMC Res Notes; 2018 Jun; 11(1):404. PubMed ID: 29929531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism of N-terminal acetylation by the ternary NatC complex.
    Deng S; Gottlieb L; Pan B; Supplee J; Wei X; Petersson EJ; Marmorstein R
    Structure; 2021 Oct; 29(10):1094-1104.e4. PubMed ID: 34019809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of Human NatA and Its Regulation by the Huntingtin Interacting Protein HYPK.
    Gottlieb L; Marmorstein R
    Structure; 2018 Jul; 26(7):925-935.e8. PubMed ID: 29754825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple impacts of Naa10p on cancer progression: Molecular functions and clinical prospects.
    Ho KH; Pan KF; Cheng TY; Chien MH; Hua KT
    Biochim Biophys Acta Rev Cancer; 2023 Nov; 1878(6):188973. PubMed ID: 37659460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation.
    Arnesen T; Starheim KK; Van Damme P; Evjenth R; Dinh H; Betts MJ; Ryningen A; Vandekerckhove J; Gevaert K; Anderson D
    Mol Cell Biol; 2010 Apr; 30(8):1898-909. PubMed ID: 20154145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N-terminal acetyltransferase Naa10 is essential for zebrafish development.
    Ree R; Myklebust LM; Thiel P; Foyn H; Fladmark KE; Arnesen T
    Biosci Rep; 2015 Aug; 35(5):. PubMed ID: 26251455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.