These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47 related articles for article (PubMed ID: 2391237)
1. The effect of phenylglyoxal on Cu,Zn superoxide dismutase from the shark Prionace glauca. Galtieri A; Lania A; Polticelli F; Calabrese L Ital J Biochem; 1990; 39(3):207A-208A. PubMed ID: 2391237 [No Abstract] [Full Text] [Related]
2. The inactivation of shark Cu,Zn superoxide dismutase by hydrogen peroxide. Galtieri A; Lania A; Polticelli F; Calabrese L Ital J Biochem; 1990; 39(3):206A-207A. PubMed ID: 2391236 [No Abstract] [Full Text] [Related]
3. Substitution of arginine for lysine 134 alters electrostatic parameters of the active site in shark Cu,Zn superoxide dismutase. Calabrese L; Polticelli F; O'Neill P; Galtieri A; Barra D; SchininĂ E; Bossa F FEBS Lett; 1989 Jun; 250(1):49-52. PubMed ID: 2500367 [TBL] [Abstract][Full Text] [Related]
4. Isolation and characterization of Cu,Zn superoxide dismutase of the shark Prionace glauca. Galtieri A; Natoli G; Lania A; Calabrese L Comp Biochem Physiol B; 1986; 83(3):555-9. PubMed ID: 3007020 [TBL] [Abstract][Full Text] [Related]
5. A comparison of the effects of cyanide, hydrogen peroxide, and phenylglyoxal on eucaryotic and procaryotic Cu,Zn superoxide dismutases. Borders CL; Fridovich I Arch Biochem Biophys; 1985 Sep; 241(2):472-6. PubMed ID: 4037799 [TBL] [Abstract][Full Text] [Related]
6. Essentiality of the active-site arginine residue for the normal catalytic activity of Cu,Zn superoxide dismutase. Borders CL; Saunders JE; Blech DM; Fridovich I Biochem J; 1985 Sep; 230(3):771-6. PubMed ID: 4062877 [TBL] [Abstract][Full Text] [Related]
7. Involvement of the copper in the inhibition of Cu,Zn superoxide dismutase activity at high pH. Calabrese L; Polticelli F; Capo C; Musci G Free Radic Res Commun; 1991; 12-13 Pt 1():305-12. PubMed ID: 1649097 [TBL] [Abstract][Full Text] [Related]
8. Molecular modeling and electrostatic potential calculations on chemically modified Cu,Zn superoxide dismutases from Bos taurus and shark Prionace glauca: role of Lys134 in electrostatically steering the substrate to the active site. Polticelli F; Falconi M; O'Neill P; Petruzelli R; Galtieri A; Lania A; Calabrese L; Rotilio G; Desideri A Arch Biochem Biophys; 1994 Jul; 312(1):22-30. PubMed ID: 8031131 [TBL] [Abstract][Full Text] [Related]
9. Identification of Arg-143 as the essential arginyl residue in yeast Cu,Zn superoxide dismutase by use of a chromophoric arginine reagent. Borders CL; Johansen JT Biochem Biophys Res Commun; 1980 Oct; 96(3):1071-8. PubMed ID: 7002158 [No Abstract] [Full Text] [Related]
10. Arginine modification by phenylglyoxal and (p-hydroxyphenyl)glyoxal: reaction rates and intermediates. Eun HM Biochem Int; 1988 Oct; 17(4):719-27. PubMed ID: 3240319 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial proton leak rates in the slow, oxidative myotomal muscle and liver of the endothermic shortfin mako shark (Isurus oxyrinchus) and the ectothermic blue shark (Prionace glauca) and leopard shark (Triakis semifasciata). Duong CA; Sepulveda CA; Graham JB; Dickson KA J Exp Biol; 2006 Jul; 209(Pt 14):2678-85. PubMed ID: 16809458 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen peroxide damages the zinc-binding site of zinc-deficient Cu,Zn superoxide dismutase. Sampson JB; Beckman JS Arch Biochem Biophys; 2001 Aug; 392(1):8-13. PubMed ID: 11469788 [TBL] [Abstract][Full Text] [Related]
13. Chemical modification of iron- and manganese-containing superoxide dismutases from Escherichia coli. Borders CL; Horton PJ; Beyer WF Arch Biochem Biophys; 1989 Jan; 268(1):74-80. PubMed ID: 2643390 [TBL] [Abstract][Full Text] [Related]
14. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase. Ye M; English AM Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490 [TBL] [Abstract][Full Text] [Related]
15. Chemical nature of proteins in the placoid scale of the blue shark, Prionace glauca L. Kawasaki H; Kawaguchi T; Yano T; Fujimura S; Yago M Arch Oral Biol; 1980; 25(5):313-20. PubMed ID: 6778463 [No Abstract] [Full Text] [Related]
16. Evidence for the presence of anion-recognition sites in pig-liver aldehyde reductase. Modification by phenyl glyoxal and p-carboxyphenyl glyoxal of an arginyl residue located close to the substrate-binding site. Branlant G; Tritsch D; Biellmann JF Eur J Biochem; 1981 Jun; 116(3):505-12. PubMed ID: 7021149 [No Abstract] [Full Text] [Related]
17. Chemical modification of arginine at the active site of the bovine erythrocyte superoxide dismutase. Malinowski DP; Fridovich I Biochemistry; 1979 Dec; 18(26):5909-17. PubMed ID: 518876 [No Abstract] [Full Text] [Related]
18. Identification of the residues responsible for the alkaline inhibition of the activity of Cu,Zn superoxide dismutase: a study of native and chemically modified enzymes. Polticelli F; O'Neill P; Costanzo S; Lania A; Rotilio G; Desideri A Arch Biochem Biophys; 1995 Aug; 321(1):123-6. PubMed ID: 7639510 [TBL] [Abstract][Full Text] [Related]
19. Isolation of enamelinlike proteins from blue shark (Prionace glauca) enameloid. Graham EE J Exp Zool; 1985 May; 234(2):185-91. PubMed ID: 3998677 [TBL] [Abstract][Full Text] [Related]
20. Examination of the role of arginine-143 in the human copper and zinc superoxide dismutase by site-specific mutagenesis. Beyer WF; Fridovich I; Mullenbach GT; Hallewell R J Biol Chem; 1987 Aug; 262(23):11182-7. PubMed ID: 3112154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]