These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23912500)

  • 1. Combined Auditory and Vibrotactile Feedback for Human-Machine-Interface Control.
    Thorp EB; Larson E; Stepp CE
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):62-8. PubMed ID: 23912500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of augmentative visual training in auditory human-machine-interface performance.
    Hands GL; Larson E; Stepp CE
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2804-7. PubMed ID: 24110310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of augmentative visual training on audio-motor mapping.
    Hands GL; Larson E; Stepp CE
    Hum Mov Sci; 2014 Jun; 35():145-55. PubMed ID: 24529925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrotactile feedback aids EMG control of object manipulation.
    Stepp CE; Chang C; Malhotra M; Matsuoka Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1061-4. PubMed ID: 22254496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Categorical vowel perception enhances the effectiveness and generalization of auditory feedback in human-machine-interfaces.
    Larson E; Terry HP; Canevari MM; Stepp CE
    PLoS One; 2013; 8(3):e59860. PubMed ID: 23527278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated training with augmentative vibrotactile feedback increases object manipulation performance.
    Stepp CE; An Q; Matsuoka Y
    PLoS One; 2012; 7(2):e32743. PubMed ID: 22384283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrotactile sensory substitution for electromyographic control of object manipulation.
    Rombokas E; Stepp CE; Chang C; Malhotra M; Matsuoka Y
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2226-32. PubMed ID: 23508245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A brain-computer interface with vibrotactile biofeedback for haptic information.
    Chatterjee A; Aggarwal V; Ramos A; Acharya S; Thakor NV
    J Neuroeng Rehabil; 2007 Oct; 4():40. PubMed ID: 17941986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.
    Li S; Chen X; Zhang D; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3070-3. PubMed ID: 24110376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrotactile stimulation of the upper leg: effects of location, stimulation method and habituation.
    Wentink EC; Mulder A; Rietman JS; Veltink PH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1668-71. PubMed ID: 22254645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory stimuli from a sensor glove model modulate cortical audiotactile integration.
    Mendes RM; Barbosa RI; Salmón CE; Rondinoni C; Escorsi-Rosset S; Delsim JC; Barbieri CH; Mazzer N
    Neurosci Lett; 2013 Aug; 548():33-7. PubMed ID: 23628668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed.
    Raveh E; Portnoy S; Friedman J
    Hum Mov Sci; 2018 Apr; 58():32-40. PubMed ID: 29353091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Object manipulation improvements due to single session training outweigh the differences among stimulation sites during vibrotactile feedback.
    Stepp CE; Matsuoka Y
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):677-85. PubMed ID: 21984521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relative importance of visual, auditory, and haptic information for the user's experience of mechanical switches.
    Mortensen DH; Bech S; Begault DR; Adelstein BD
    Perception; 2009; 38(10):1560-71. PubMed ID: 19950486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing vibrotactile feedback strategies by controlling a cursor with unstable dynamics.
    Quick KM; Card NS; Whaite SM; Mischel J; Loughlin P; Batista AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2589-92. PubMed ID: 25570520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of neural structures involved in stuttering using vibrotactile feedback.
    Cheadle O; Sorger C; Howell P
    Brain Lang; 2018; 180-182():50-61. PubMed ID: 29747034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Take-over again: Investigating multimodal and directional TORs to get the driver back into the loop.
    Petermeijer S; Bazilinskyy P; Bengler K; de Winter J
    Appl Ergon; 2017 Jul; 62():204-215. PubMed ID: 28411731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Auditory Feedback on Tactile Intensity Perception in a Touchscreen Application.
    Won HI; Altinsoy ME
    IEEE Trans Haptics; 2020; 13(2):343-353. PubMed ID: 31634144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dynamic vibrotactile feedback on the control of isometric finger force.
    Ahmaniemi T
    IEEE Trans Haptics; 2013; 6(3):376-80. PubMed ID: 24808334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stiffness Feedback for Myoelectric Forearm Prostheses Using Vibrotactile Stimulation.
    Witteveen HJ; Luft F; Rietman JS; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):53-61. PubMed ID: 23799698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.