BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23912761)

  • 1. Native fluorescence spectroscopy reveals spectral differences among prostate cancer cell lines with different risk levels.
    Pu Y; Xue J; Wang W; Xu B; Gu Y; Tang R; Ackerstaff E; Koutcher JA; Achilefu S; Alfano RR
    J Biomed Opt; 2013 Aug; 18(8):87002. PubMed ID: 23912761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studied using native fluorescence spectroscopy with selective excitation wavelength.
    Pu Y; Wang W; Tang G; Alfano RR
    J Biomed Opt; 2010; 15(4):047008. PubMed ID: 20799839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying metastatic ability of prostate cancer cell lines using native fluorescence spectroscopy and machine learning methods.
    Xue J; Pu Y; Smith J; Gao X; Wang C; Wu B
    Sci Rep; 2021 Jan; 11(1):2282. PubMed ID: 33500529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stokes shift spectroscopic analysis of multifluorophores for human cancer detection in breast and prostate tissues.
    Pu Y; Wang W; Yang Y; Alfano RR
    J Biomed Opt; 2013 Jan; 18(1):17005. PubMed ID: 23296086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan as the fingerprint for distinguishing aggressiveness among breast cancer cell lines using native fluorescence spectroscopy.
    Zhang L; Pu Y; Xue J; Pratavieira S; Xu B; Achilefu S; Alfano RR
    J Biomed Opt; 2014 Mar; 19(3):37005. PubMed ID: 24676384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species.
    Pradhan A; Pal P; Durocher G; Villeneuve L; Balassy A; Babai F; Gaboury L; Blanchard L
    J Photochem Photobiol B; 1995 Dec; 31(3):101-12. PubMed ID: 8583278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic potential of Stokes Shift spectroscopy of breast and prostate tissues-- a preliminary pilot study.
    Ebenezar J; Pu Y; Liu CH; Wang WB; Alfano RR
    Technol Cancer Res Treat; 2011 Apr; 10(2):153-61. PubMed ID: 21381793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection.
    Alimova A; Katz A; Sriramoju V; Budansky Y; Bykov AA; Zeylikovich R; Alfano RR
    J Biomed Opt; 2007; 12(1):014004. PubMed ID: 17343479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in fluorescence profiles from breast cancer tissues due to changes in relative tryptophan content via energy transfer: tryptophan content correlates with histologic grade and tumor size but not with lymph node metastases.
    Sordillo LA; Sordillo PP; Budansky Y; Pu Y; Alfano RR
    J Biomed Opt; 2014 Dec; 19(12):125002. PubMed ID: 25521053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fluorescence spectral characteristics of human blood and its endogenous fluorophores].
    Li BH; Zhang ZX; Xie SS; Chen R
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jul; 26(7):1310-3. PubMed ID: 17020047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study for the detection of kidney cancer using fluorescence emission spectra and synchronous fluorescence excitation spectra of blood and urine.
    Atif M; AlSalhi MS; Devanesan S; Masilamani V; Farhat K; Rabah D
    Photodiagnosis Photodyn Ther; 2018 Sep; 23():40-44. PubMed ID: 29800712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors.
    Jóskowiak A; Stasio N; Chu V; Prazeres DM; Conde JP
    Biosens Bioelectron; 2012; 36(1):242-9. PubMed ID: 22565094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key native fluorophores analysis of human breast cancer tissues using Gram-Schmidt subspace method.
    Pu Y; Sordillo LA; Yang Y; Alfano RR
    Opt Lett; 2014 Dec; 39(24):6787-90. PubMed ID: 25502997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues.
    Ebenezar J; Pu Y; Wang WB; Liu CH; Alfano RR
    Appl Opt; 2012 Jun; 51(16):3642-9. PubMed ID: 22695604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stokes shift spectroscopy and machine learning for label-free human prostate cancer detection.
    Pu Y; Wu B; Mo H; Alfano RR
    Opt Lett; 2023 Feb; 48(4):936-939. PubMed ID: 36790979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods.
    Pu Y; Wang W; Yang Y; Alfano RR
    Appl Opt; 2013 Feb; 52(6):1293-301. PubMed ID: 23435002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting cervical cancer progression through extracted intrinsic fluorescence and principal component analysis.
    Devi S; Panigrahi PK; Pradhan A
    J Biomed Opt; 2014 Dec; 19(12):127003. PubMed ID: 25504494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paramagnetic nanoparticles as a platform for FRET-based sarcosine picomolar detection.
    Heger Z; Cernei N; Krizkova S; Masarik M; Kopel P; Hodek P; Zitka O; Adam V; Kizek R
    Sci Rep; 2015 Mar; 5():8868. PubMed ID: 25746688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autofluorescence spectroscopy of normal and malignant human breast cell lines.
    Palmer GM; Keely PJ; Breslin TM; Ramanujam N
    Photochem Photobiol; 2003 Nov; 78(5):462-9. PubMed ID: 14653577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox imaging of human breast cancer core biopsies: a preliminary investigation.
    Xu HN; Tchou J; Li LZ
    Acad Radiol; 2013 Jun; 20(6):764-8. PubMed ID: 23664401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.