These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 23912796)
1. Estimation of electrode ionomer oxygen permeability and ionomer-phase oxygen transport resistance in polymer electrolyte fuel cells. Sambandam S; Parrondo J; Ramani V Phys Chem Chem Phys; 2013 Sep; 15(36):14994-5002. PubMed ID: 23912796 [TBL] [Abstract][Full Text] [Related]
2. Influence of binder properties on kinetic and transport processes in polymer electrolyte fuel cell electrodes. Sambandam S; Ramani V Phys Chem Chem Phys; 2010 Jun; 12(23):6140-9. PubMed ID: 20383348 [TBL] [Abstract][Full Text] [Related]
3. Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. Asano N; Aoki M; Suzuki S; Miyatake K; Uchida H; Watanabe M J Am Chem Soc; 2006 Feb; 128(5):1762-9. PubMed ID: 16448153 [TBL] [Abstract][Full Text] [Related]
4. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. Miyatake K; Chikashige Y; Higuchi E; Watanabe M J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469 [TBL] [Abstract][Full Text] [Related]
5. Determination of O₂ Mass Transport at the Pt | PFSA Ionomer Interface under Reduced Relative Humidity. Novitski D; Holdcroft S ACS Appl Mater Interfaces; 2015 Dec; 7(49):27314-23. PubMed ID: 26583742 [TBL] [Abstract][Full Text] [Related]
6. Transport and Electrochemical Interface Properties of Ionomers in Low-Pt Loading Catalyst Layers: Effect of Ionomer Equivalent Weight and Relative Humidity. Poojary S; Islam MN; Shrivastava UN; Roberts EPL; Karan K Molecules; 2020 Jul; 25(15):. PubMed ID: 32722653 [TBL] [Abstract][Full Text] [Related]
7. Development of MFC using sulphonated polyether ether ketone (SPEEK) membrane for electricity generation from waste water. Ayyaru S; Dharmalingam S Bioresour Technol; 2011 Dec; 102(24):11167-71. PubMed ID: 22000968 [TBL] [Abstract][Full Text] [Related]
8. Study on Control of Polymeric Architecture of Sulfonated Hydrocarbon-Based Polymers for High-Performance Polymer Electrolyte Membranes in Fuel Cell Applications. Kim M; Ko H; Nam SY; Kim K Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685282 [TBL] [Abstract][Full Text] [Related]
9. Dictating Pt-Based Electrocatalyst Performance in Polymer Electrolyte Fuel Cells, from Formulation to Application. Van Cleve T; Khandavalli S; Chowdhury A; Medina S; Pylypenko S; Wang M; More KL; Kariuki N; Myers DJ; Weber AZ; Mauger SA; Ulsh M; Neyerlin KC ACS Appl Mater Interfaces; 2019 Dec; 11(50):46953-46964. PubMed ID: 31742376 [TBL] [Abstract][Full Text] [Related]
10. Potential-Dependent Ionomer Rearrangement on the Pt Surface in Polymer Electrolyte Membrane Fuel Cells. Lee DW; Hyun J; Oh E; Seok K; Bae H; Park J; Kim HT ACS Appl Mater Interfaces; 2024 Jan; 16(4):4637-4647. PubMed ID: 38251952 [TBL] [Abstract][Full Text] [Related]
11. Effect of Blended Perfluorinated Sulfonic Acid Ionomer Binder on the Performance of Catalyst Layers in Polymer Electrolyte Membrane Fuel Cells. Kim BS; Park JH; Park JS Membranes (Basel); 2023 Sep; 13(9):. PubMed ID: 37755216 [TBL] [Abstract][Full Text] [Related]
12. Preparation and fuel cell performance of catalyst layers using sulfonated polyimide ionomers. Omata T; Tanaka M; Miyatake K; Uchida M; Uchida H; Watanabe M ACS Appl Mater Interfaces; 2012 Feb; 4(2):730-7. PubMed ID: 22201410 [TBL] [Abstract][Full Text] [Related]
13. Modulated ionomer distribution in the catalyst layer of polymer electrolyte membrane fuel cells for high temperature operation. Choo MJ; Oh KH; Kim HT; Park JK ChemSusChem; 2014 Aug; 7(8):2335-41. PubMed ID: 24777945 [TBL] [Abstract][Full Text] [Related]
14. Exploring the Structure-Performance Relationship of Sulfonated Polysulfone Proton Exchange Membrane by a Combined Computational and Experimental Approach. Simari C; Prejanò M; Lufrano E; Sicilia E; Nicotera I Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33804763 [TBL] [Abstract][Full Text] [Related]
15. Effect of platinum loading on fuel cell cathode performance using hydrocarbon ionomers as binders. Omata T; Uchida M; Uchida H; Watanabe M; Miyatake K Phys Chem Chem Phys; 2012 Dec; 14(48):16713-8. PubMed ID: 23138448 [TBL] [Abstract][Full Text] [Related]
16. Full Parametric Study of the Influence of Ionomer Content, Catalyst Loading and Catalyst Type on Oxygen and Ion Transport in PEM Fuel Cell Catalyst Layers. Alink R; Singh R; Schneider P; Christmann K; Schall J; Keding R; Zamel N Molecules; 2020 Mar; 25(7):. PubMed ID: 32230750 [TBL] [Abstract][Full Text] [Related]
17. In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell. Prabhakaran V; Arges CG; Ramani V Phys Chem Chem Phys; 2013 Nov; 15(43):18965-72. PubMed ID: 24092495 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical performance and durability of carbon supported Pt catalyst in contact with aqueous and polymeric proton conductors. Andersen SM; Skou E ACS Appl Mater Interfaces; 2014 Oct; 6(19):16565-76. PubMed ID: 25216270 [TBL] [Abstract][Full Text] [Related]
19. Microstructure Investigation of Polymer Electrolyte Fuel Cell Catalyst Layers Containing Perfluorosulfonated Ionomer. Koga M; Matsumoto H; Kunishima M; Tokita M; Masunaga H; Ohta N; Takeuchi A; Mizukado J; Sugimori H; Shinohara K; Uemura S; Yoshida T; Hirai S Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34202780 [TBL] [Abstract][Full Text] [Related]
20. Poly(p-phenylene sulfone)s with high ion exchange capacity: ionomers with unique microstructural and transport features. de Araujo CC; Kreuer KD; Schuster M; Portale G; Mendil-Jakani H; Gebel G; Maier J Phys Chem Chem Phys; 2009 May; 11(17):3305-12. PubMed ID: 19370228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]