These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23912894)

  • 1. In-situ atomic-scale observation of irradiation-induced void formation.
    Xu W; Zhang Y; Cheng G; Jian W; Millett PC; Koch CC; Mathaudhu SN; Zhu Y
    Nat Commun; 2013; 4():2288. PubMed ID: 23912894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralong 1D Vacancy Channels for Rapid Atomic Migration during 2D Void Formation in Monolayer MoS
    Chen Q; Li H; Zhou S; Xu W; Chen J; Sawada H; Allen CS; Kirkland AI; Grossman JC; Warner JH
    ACS Nano; 2018 Aug; 12(8):7721-7730. PubMed ID: 30117727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time atomic scale observation of void formation and anisotropic growth in II-VI semiconducting ribbons.
    Huang X; Jones T; Fan H; Willinger MG
    Nanoscale; 2017 Aug; 9(34):12479-12485. PubMed ID: 28816305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voxel based parallel post processor for void nucleation and growth analysis of atomistic simulations of material fracture.
    Hemani H; Warrier M; Sakthivel N; Chaturvedi S
    J Mol Graph Model; 2014 May; 50():134-41. PubMed ID: 24793054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-scale dynamics of triangular hole growth in monolayer hexagonal boron nitride under electron irradiation.
    Ryu GH; Park HJ; Ryou J; Park J; Lee J; Kim G; Shin HS; Bielawski CW; Ruoff RS; Hong S; Lee Z
    Nanoscale; 2015 Jun; 7(24):10600-5. PubMed ID: 25960354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of void nucleation and growth in bcc Fe: atomistic simulations at experimental time scales.
    Fan Y; Kushima A; Yip S; Yildiz B
    Phys Rev Lett; 2011 Mar; 106(12):125501. PubMed ID: 21517322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical prediction and atomic kinetic Monte Carlo simulations of void superlattice self-organization under irradiation.
    Gao Y; Zhang Y; Schwen D; Jiang C; Sun C; Gan J; Bai XM
    Sci Rep; 2018 Apr; 8(1):6629. PubMed ID: 29700395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling the Atomic Shuffles of Twinning Nucleation in Hexagonal Close-Packed Rhenium Nanocrystals.
    Ma Y; Chen Y; Guo T; Wu HH; Wang R; He Y; Wang L; Qiao L
    Nano Lett; 2023 Sep; 23(18):8498-8504. PubMed ID: 37695649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct transformation of vacancy voids to stacking fault tetrahedra.
    Uberuaga BP; Hoagland RG; Voter AF; Valone SM
    Phys Rev Lett; 2007 Sep; 99(13):135501. PubMed ID: 17930607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ observation of void evolution in 1,3,5-triamino-2,4,6-trinitrobenzene under compression by synchrotron radiation X-ray nano-computed tomography.
    Chen L; Wu L; Liu Y; Chen W
    J Synchrotron Radiat; 2020 Jan; 27(Pt 1):127-133. PubMed ID: 31868745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable faceted voids with luminescent enhanced edges in WS
    Kumar P; Chatterjee D; Maeda T; Roy A; Kaneko K; Balakrishnan V
    Nanoscale; 2018 Aug; 10(34):16321-16331. PubMed ID: 30129965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ observation of shear-driven amorphization in silicon crystals.
    He Y; Zhong L; Fan F; Wang C; Zhu T; Mao SX
    Nat Nanotechnol; 2016 Oct; 11(10):866-871. PubMed ID: 27643458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helium bubble nucleation and growth in α-Fe: insights from first-principles simulations.
    Xiao W; Zhang X; Geng WT; Lu G
    J Phys Condens Matter; 2014 Jun; 26(25):255401. PubMed ID: 24871542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal.
    Xu S; Deng X
    Nanotechnology; 2008 Mar; 19(11):115705. PubMed ID: 21730565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of {113} defect formation in silicon: clustering of interstitial-vacancy pairs studied by in situ high-resolution electron microscope irradiation.
    Fedina LI; Song SA; Chuvilin AL; Gutakovskii AK; Latyshev AV
    Microsc Microanal; 2013 Aug; 19 Suppl 5():38-42. PubMed ID: 23920171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-solid phase transitions: interface controlled reactivity and formation of intermediate structures.
    Leoni S
    Chemistry; 2007; 13(36):10022-9. PubMed ID: 17999395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of Bubble Nucleation and Growth Confined in 2D Flakes.
    Zhang Z; Qiang J; Wang S; Xu M; Gan M; Rao Z; Tian T; Ke S; Zhou Y; Hu Y; Leung CW; Mak CL; Fei L
    Small; 2021 Oct; 17(39):e2103301. PubMed ID: 34473395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic Determination of Anisotropic Surface Energy-Associated Growth Patterns of Magnesium Alloy Dendrites.
    Du J; Zhang A; Guo Z; Yang M; Li M; Xiong S
    ACS Omega; 2017 Dec; 2(12):8803-8809. PubMed ID: 31457410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ observation of colloidal monolayer nucleation driven by an alternating electric field.
    Zhang KQ; Liu XY
    Nature; 2004 Jun; 429(6993):739-43. PubMed ID: 15201905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.