These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23912994)

  • 81. Identification of transcription factor-DNA interactions using chromatin immunoprecipitation assays.
    Nie L; Vázquez AE; Yamoah EN
    Methods Mol Biol; 2009; 493():311-21. PubMed ID: 18839356
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo.
    Aparicio O; Geisberg JV; Sekinger E; Yang A; Moqtaderi Z; Struhl K
    Curr Protoc Mol Biol; 2005 Feb; Chapter 21():Unit 21.3. PubMed ID: 18265358
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Chromatin immunoprecipitation assay as a tool for analyzing transcription factor activity.
    Gade P; Kalvakolanu DV
    Methods Mol Biol; 2012; 809():85-104. PubMed ID: 22113270
    [TBL] [Abstract][Full Text] [Related]  

  • 84. [Application of chromatin immunoprecipitation assay in deciphering DNA-protein interactions].
    Wang CY; Shi JD; Zhu Y; Zhang J
    Yi Chuan; 2005 Sep; 27(5):801-7. PubMed ID: 16257913
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Exploring the Dynamic Relationship Between Cellular Metabolism and Chromatin Structure Using SILAC-Mass Spec and ChIP-Sequencing.
    Mews P; Berger SL
    Methods Enzymol; 2016; 574():311-329. PubMed ID: 27423866
    [TBL] [Abstract][Full Text] [Related]  

  • 86. ChIP and ChIP-Related Techniques: Expanding the Fields of Application and Improving ChIP Performance.
    Visa N; Jordán-Pla A
    Methods Mol Biol; 2018; 1689():1-7. PubMed ID: 29027160
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Cell type-specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP.
    Bonn S; Zinzen RP; Perez-Gonzalez A; Riddell A; Gavin AC; Furlong EE
    Nat Protoc; 2012 Apr; 7(5):978-94. PubMed ID: 22538849
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Chromatin Immunoprecipitation for Detecting Epigenetic Marks on Plant Nucleosomes.
    Nagaki K
    Methods Mol Biol; 2016; 1469():197-206. PubMed ID: 27557697
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Chromatin Immunoprecipitation in Early Mouse Embryos.
    García-González EG; Roque-Ramirez B; Palma-Flores C; Hernández-Hernández JM
    Methods Mol Biol; 2018; 1752():145-155. PubMed ID: 29564770
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Analysis of protein co-occupancy by quantitative sequential chromatin immunoprecipitation.
    Geisberg JV; Struhl K
    Curr Protoc Mol Biol; 2005 May; Chapter 21():Unit 21.8. PubMed ID: 18265359
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Automated in situ chromatin profiling efficiently resolves cell types and gene regulatory programs.
    Janssens DH; Wu SJ; Sarthy JF; Meers MP; Myers CH; Olson JM; Ahmad K; Henikoff S
    Epigenetics Chromatin; 2018 Dec; 11(1):74. PubMed ID: 30577869
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Two-step cross-linking for analysis of protein-chromatin interactions.
    Tian B; Yang J; Brasier AR
    Methods Mol Biol; 2012; 809():105-20. PubMed ID: 22113271
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans.
    Mukhopadhyay A; Deplancke B; Walhout AJ; Tissenbaum HA
    Nat Protoc; 2008; 3(4):698-709. PubMed ID: 18388953
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Improving chromatin immunoprecipitation (ChIP) by suppression of method-induced DNA-damage signaling.
    Beneke S
    Methods Mol Biol; 2015; 1228():67-81. PubMed ID: 25311123
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Application of ChIP-Seq and related techniques to the study of immune function.
    Northrup DL; Zhao K
    Immunity; 2011 Jun; 34(6):830-42. PubMed ID: 21703538
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Endosperm-specific chromatin profiling by fluorescence-activated nuclei sorting and ChIP-on-chip.
    Weinhofer I; Köhler C
    Methods Mol Biol; 2014; 1112():105-15. PubMed ID: 24478010
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Extensive chromatin fragmentation improves enrichment of protein binding sites in chromatin immunoprecipitation experiments.
    Fan X; Lamarre-Vincent N; Wang Q; Struhl K
    Nucleic Acids Res; 2008 Nov; 36(19):e125. PubMed ID: 18765474
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Chromatin Immunoprecipitation in Macrophages.
    Rousselet G
    Methods Mol Biol; 2018; 1784():177-186. PubMed ID: 29761399
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Chromatin immunoprecipitation: advancing analysis of nuclear hormone signaling.
    Vinckevicius A; Chakravarti D
    J Mol Endocrinol; 2012 Oct; 49(2):R113-23. PubMed ID: 22872135
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Chromatin immunoprecipitation (ChIP) to assay dynamic histone modification in activated gene expression in human cells.
    Buro LJ; Shah S; Henriksen MA
    J Vis Exp; 2010 Jul; (41):. PubMed ID: 20729799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.