These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23913366)

  • 1. Region-specific regulation of posterior axial elongation during vertebrate embryogenesis.
    Neijts R; Simmini S; Giuliani F; van Rooijen C; Deschamps J
    Dev Dyn; 2014 Jan; 243(1):88-98. PubMed ID: 23913366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cdx mutant axial progenitor cells are rescued by grafting to a wild type environment.
    Bialecka M; Wilson V; Deschamps J
    Dev Biol; 2010 Nov; 347(1):228-34. PubMed ID: 20816799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cdx and T Brachyury Co-activate Growth Signaling in the Embryonic Axial Progenitor Niche.
    Amin S; Neijts R; Simmini S; van Rooijen C; Tan SC; Kester L; van Oudenaarden A; Creyghton MP; Deschamps J
    Cell Rep; 2016 Dec; 17(12):3165-3177. PubMed ID: 28009287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and segmentation of the vertebrate body axis.
    Bénazéraf B; Pourquié O
    Annu Rev Cell Dev Biol; 2013; 29():1-26. PubMed ID: 23808844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors that coordinate mesoderm specification from neuromesodermal progenitors with segmentation during vertebrate axial extension.
    Martin BL
    Semin Cell Dev Biol; 2016 Jan; 49():59-67. PubMed ID: 26658097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A non directional cell migration gradient in the presomitic mesoderm contributes to axis elongation in chicken embryos].
    Bénazéraf B; François P; Denans N; Little CD; Pourquié O
    Biol Aujourdhui; 2011; 205(2):95-103. PubMed ID: 21831340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos.
    Jurberg AD; Aires R; Varela-Lasheras I; Nóvoa A; Mallo M
    Dev Cell; 2013 Jun; 25(5):451-62. PubMed ID: 23763947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of axial elongation by Cdx.
    Zhu Y; Lohnes D
    Dev Biol; 2022 Mar; 483():118-127. PubMed ID: 34958748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of early anterior-posterior patterning in the mouse embryo by TGF-beta signalling.
    Robertson EJ; Norris DP; Brennan J; Bikoff EK
    Philos Trans R Soc Lond B Biol Sci; 2003 Aug; 358(1436):1351-7; discussion 1357. PubMed ID: 14511481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the vertebrate tailbud.
    Beck CW
    Wiley Interdiscip Rev Dev Biol; 2015; 4(1):33-44. PubMed ID: 25382697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Gradient of Glycolytic Activity Coordinates FGF and Wnt Signaling during Elongation of the Body Axis in Amniote Embryos.
    Oginuma M; Moncuquet P; Xiong F; Karoly E; Chal J; Guevorkian K; Pourquié O
    Dev Cell; 2017 Feb; 40(4):342-353.e10. PubMed ID: 28245921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of maternal-zygotic ugdh mutants reveals divergent roles for HSPGs in vertebrate embryogenesis and provides new insight into the initiation of left-right asymmetry.
    Superina S; Borovina A; Ciruna B
    Dev Biol; 2014 Mar; 387(2):154-66. PubMed ID: 24462977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning of vertebrate Protogenin (Prtg) and comparative expression analysis during axis elongation.
    Vesque C; Anselme I; Couvé E; Charnay P; Schneider-Maunoury S
    Dev Dyn; 2006 Oct; 235(10):2836-44. PubMed ID: 16881056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Left-right asymmetry in the vertebrate embryo: from early information to higher-level integration.
    Raya A; Izpisúa Belmonte JC
    Nat Rev Genet; 2006 Apr; 7(4):283-93. PubMed ID: 16543932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved patterns of cell movements during vertebrate gastrulation.
    Solnica-Krezel L
    Curr Biol; 2005 Mar; 15(6):R213-28. PubMed ID: 15797016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cripto-independent Nodal signaling promotes positioning of the A-P axis in the early mouse embryo.
    Liguori GL; Borges AC; D'Andrea D; Liguoro A; Gonçalves L; Salgueiro AM; Persico MG; Belo JA
    Dev Biol; 2008 Mar; 315(2):280-9. PubMed ID: 18241853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review: Time-space translation regulates trunk axial patterning in the early vertebrate embryo.
    Durston AJ; Jansen HJ; Wacker SA
    Genomics; 2010 May; 95(5):250-5. PubMed ID: 19944143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lineage tracing of axial progenitors using Nkx1-2CreER
    Rodrigo Albors A; Halley PA; Storey KG
    Development; 2018 Oct; 145(19):. PubMed ID: 30201686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early posterior/ventral fate specification in the vertebrate embryo.
    Muñoz-Sanjuán I; H-Brivanlou A
    Dev Biol; 2001 Sep; 237(1):1-17. PubMed ID: 11518501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromesodermal Progenitors: A Basis for Robust Axial Patterning in Development and Evolution.
    Sambasivan R; Steventon B
    Front Cell Dev Biol; 2020; 8():607516. PubMed ID: 33520989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.