These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 23913372)
1. Comparative in vitro and in planta analyses of extracellular enzymes secreted by the pathogenic fungus Sclerotinia sclerotiorum. Oliveira MB; Barbosa SC; Petrofeza S Genet Mol Res; 2013 Jun; 12(2):1796-807. PubMed ID: 23913372 [TBL] [Abstract][Full Text] [Related]
2. Effect of different carbon sources on proteases secreted by the fungal pathogen Sclerotinia sclerotiorum during Phaseolus vulgaris infection. Bueno EA; Oliveira MB; Andrade RV; Lobo M; Petrofeza S Genet Mol Res; 2012 Aug; 11(3):2171-81. PubMed ID: 22782635 [TBL] [Abstract][Full Text] [Related]
3. Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes. Li R; Rimmer R; Buchwaldt L; Sharpe AG; Séguin-Swartz G; Hegedus DD Fungal Genet Biol; 2004 Aug; 41(8):754-65. PubMed ID: 15219560 [TBL] [Abstract][Full Text] [Related]
4. Interaction between Brassica napus polygalacturonase inhibition proteins and Sclerotinia sclerotiorum polygalacturonase: implications for rapeseed resistance to fungal infection. Wang Z; Wan L; Zhang X; Xin Q; Song Y; Hong D; Sun Y; Yang G Planta; 2021 Jan; 253(2):34. PubMed ID: 33459878 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the dry bean polygalacturonase-inhibiting protein (PGIP) gene family during Sclerotinia sclerotiorum (Sclerotiniaceae) infection. Oliveira MB; Nascimento LB; Junior ML; Petrofeza S Genet Mol Res; 2010 Jun; 9(2):994-1004. PubMed ID: 20533194 [TBL] [Abstract][Full Text] [Related]
6. Exogenous application of methyl jasmonate induces a defense response and resistance against Sclerotinia sclerotiorum in dry bean plants. Oliveira MB; Junior ML; Grossi-de-Sá MF; Petrofeza S J Plant Physiol; 2015 Jun; 182():13-22. PubMed ID: 26037694 [TBL] [Abstract][Full Text] [Related]
7. Isolation, expression and characterization of two single-chain variable fragment antibodies against an endo-polygalacturonase secreted by Sclerotinia sclerotiorum. Yang B; Yajima W; Das D; Suresh MR; Kav NN Protein Expr Purif; 2009 Apr; 64(2):237-43. PubMed ID: 19121643 [TBL] [Abstract][Full Text] [Related]
8. The nascent-polypeptide-associated complex alpha subunit regulates the polygalacturonases expression negatively and influences the pathogenicity of Sclerotinia sclerotiorum. Li X; Guo M; Xu D; Chen F; Zhang H; Pan Y; Li M; Gao Z Mycologia; 2015; 107(6):1130-7. PubMed ID: 26297780 [TBL] [Abstract][Full Text] [Related]
9. Factors governing the regulation of Sclerotinia sclerotiorum cutinase A and polygalacturonase 1 during different stages of infection. Dallal Bashi Z; Rimmer SR; Khachatourians GG; Hegedus DD Can J Microbiol; 2012 May; 58(5):605-16. PubMed ID: 22524557 [TBL] [Abstract][Full Text] [Related]
10. Relationships among endo-polygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean. Favaron F; Sella L; D'Ovidio R Mol Plant Microbe Interact; 2004 Dec; 17(12):1402-9. PubMed ID: 15597746 [TBL] [Abstract][Full Text] [Related]
11. Expression and validation of PvPGIP genes for resistance to white mold (Sclerotinia sclerotiorum) in common beans (Phaseolus vulgaris L.). Vasconcellos RC; Lima TF; Fernandes-Brum CN; Chalfun-Junior A; Santos JB Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706575 [TBL] [Abstract][Full Text] [Related]
12. Molecular characterization and in planta detection of Sclerotinia sclerotiorum endopolygalacturonase genes. Kasza Z; Vagvölgyi C; Févre M; Cotton P Curr Microbiol; 2004 Mar; 48(3):208-13. PubMed ID: 15057467 [TBL] [Abstract][Full Text] [Related]
13. Ambient pH controls the expression of endopolygalacturonase genes in the necrotrophic fungus Sclerotinia sclerotiorum. Cotton P; Kasza Z; Bruel C; Rascle C; Fèvre M FEMS Microbiol Lett; 2003 Oct; 227(2):163-9. PubMed ID: 14592704 [TBL] [Abstract][Full Text] [Related]
14. White mould of common bean incited by Sclerotinia sclerotiorum Lib. de Bary in Egypt. Amer MA; Abou-el-Seoud I; Rasmy MR; Khater MM Commun Agric Appl Biol Sci; 2009; 74(3):771-84. PubMed ID: 20222563 [TBL] [Abstract][Full Text] [Related]
16. Characterization and in vitro expression patterns of extracellular degradative enzymes from non-pathogenic binucleate Rhizoctonia AG-G. Machinandiarena MF; Wolski EA; Barrera V; Daleo GR; Andreu AB Mycopathologia; 2005 Apr; 159(3):441-8. PubMed ID: 15883731 [TBL] [Abstract][Full Text] [Related]
17. Common bean varieties demonstrate differential physiological and metabolic responses to the pathogenic fungus Sclerotinia sclerotiorum. Robison FM; Turner MF; Jahn CE; Schwartz HF; Prenni JE; Brick MA; Heuberger AL Plant Cell Environ; 2018 Sep; 41(9):2141-2154. PubMed ID: 29476531 [TBL] [Abstract][Full Text] [Related]
18. In vitro growth and cell wall degrading enzyme production by Argentinean isolates of Macrophomina phaseolina, the causative agent of charcoal rot in corn. Ramos AM; Gally M; Szapiro G; Itzcovich T; Carabajal M; Levin L Rev Argent Microbiol; 2016; 48(4):267-273. PubMed ID: 27825736 [TBL] [Abstract][Full Text] [Related]
19. Co-operative action by endo- and exo-beta-(1 leads to 3)-glucanases from parasitic fungi in the degradation of cell-wall glucans of Sclerotinia sclerotiorum (Lib.) de Bary. Jones D; Gordon AH; Bacon JS Biochem J; 1974 Apr; 140(1):47-55. PubMed ID: 4476212 [TBL] [Abstract][Full Text] [Related]
20. Validation of an in vitro system to trigger changes in the gene expression of effectors of Sclerotinia sclerotiorum. Maximiano MR; Miranda VJ; de Barros EG; Dias SC J Appl Microbiol; 2021 Aug; 131(2):885-897. PubMed ID: 33331046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]