These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23913422)

  • 1. Oxidative stress at high temperatures in Lactococcus lactis due to an insufficient supply of Riboflavin.
    Chen J; Shen J; Solem C; Jensen PR
    Appl Environ Microbiol; 2013 Oct; 79(19):6140-7. PubMed ID: 23913422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR.
    Neves AR; Ventura R; Mansour N; Shearman C; Gasson MJ; Maycock C; Ramos A; Santos H
    J Biol Chem; 2002 Aug; 277(31):28088-98. PubMed ID: 12011086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase.
    Lopez de Felipe F; Kleerebezem M; de Vos WM; Hugenholtz J
    J Bacteriol; 1998 Aug; 180(15):3804-8. PubMed ID: 9683475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a conserved sequence in flavoproteins essential for the correct conformation and activity of the NADH oxidase NoxE of Lactococcus lactis.
    Tachon S; Chambellon E; Yvon M
    J Bacteriol; 2011 Jun; 193(12):3000-8. PubMed ID: 21498647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NoxE NADH oxidase and the electron transport chain are responsible for the ability of Lactococcus lactis to decrease the redox potential of milk.
    Tachon S; Brandsma JB; Yvon M
    Appl Environ Microbiol; 2010 Mar; 76(5):1311-9. PubMed ID: 20038695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pool of ADP and ATP regulates anaerobic product formation in resting cells of Lactococcus lactis.
    Palmfeldt J; Paese M; Hahn-Hägerdal B; Van Niel EW
    Appl Environ Microbiol; 2004 Sep; 70(9):5477-84. PubMed ID: 15345435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of lactate production by aerobic fed-batch cultures of Lactococcus lactis.
    Sano A; Takatera M; Kawai M; Ichinose R; Yamasaki-Yashiki S; Katakura Y
    J Biosci Bioeng; 2020 Oct; 130(4):402-408. PubMed ID: 32669208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-level acetaldehyde production in Lactococcus lactis by metabolic engineering.
    Bongers RS; Hoefnagel MH; Kleerebezem M
    Appl Environ Microbiol; 2005 Feb; 71(2):1109-13. PubMed ID: 15691976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis.
    Guo T; Kong J; Zhang L; Zhang C; Hu S
    PLoS One; 2012; 7(4):e36296. PubMed ID: 22558426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress in Lactococcus lactis.
    Miyoshi A; Rochat T; Gratadoux JJ; Le Loir Y; Oliveira SC; Langella P; Azevedo V
    Genet Mol Res; 2003 Dec; 2(4):348-59. PubMed ID: 15011138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions.
    Koebmann B; Blank LM; Solem C; Petranovic D; Nielsen LK; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):25-33. PubMed ID: 17824842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.
    Masuda M; Freguia S; Wang YF; Tsujimura S; Kano K
    Bioelectrochemistry; 2010 Jun; 78(2):173-5. PubMed ID: 19717350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CcpA regulation of aerobic and respiration growth in Lactococcus lactis.
    Gaudu P; Lamberet G; Poncet S; Gruss A
    Mol Microbiol; 2003 Oct; 50(1):183-92. PubMed ID: 14507373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation.
    Cretenet M; Le Gall G; Wegmann U; Even S; Shearman C; Stentz R; Jeanson S
    BMC Genomics; 2014 Dec; 15(1):1054. PubMed ID: 25467604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Heterologous expression of H2O-forming NADH oxidase in Torulopsis glabrata significantly enhance the pyruvate productivity of the host].
    Dong Z; Li X; Liu L; Du G; Chen J
    Wei Sheng Wu Xue Bao; 2008 Aug; 48(8):1061-6. PubMed ID: 18956756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism.
    Burgess CM; Slotboom DJ; Geertsma ER; Duurkens RH; Poolman B; van Sinderen D
    J Bacteriol; 2006 Apr; 188(8):2752-60. PubMed ID: 16585736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis.
    Fordyce AM; Crow VL; Thomas TD
    Appl Environ Microbiol; 1984 Aug; 48(2):332-7. PubMed ID: 6435521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-forming NADH oxidase protects Torulopsis glabrata against hyperosmotic stress.
    Xu S; Zhou J; Qin Y; Liu L; Chen J
    Yeast; 2010 Apr; 27(4):207-16. PubMed ID: 20037925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and conversion of oxygen metabolites by Lactococcus lactis subsp. lactis ATCC 19435 under different growth conditions.
    van Niel EW; Hofvendahl K; Hahn-Hägerdal B
    Appl Environ Microbiol; 2002 Sep; 68(9):4350-6. PubMed ID: 12200286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae.
    Kim JW; Seo SO; Zhang GC; Jin YS; Seo JH
    Bioresour Technol; 2015 Sep; 191():512-9. PubMed ID: 25769689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.