BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23913439)

  • 1. Pigment cell mechanisms underlying dorsal color-pattern polymorphism in the Japanese four-lined snake.
    Kuriyama T; Misawa H; Miyaji K; Sugimoto M; Hasegawa M
    J Morphol; 2013 Dec; 274(12):1353-64. PubMed ID: 23913439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pigment cell mechanism of postembryonic stripe pattern formation in the Japanese four-lined snake.
    Murakami A; Hasegawa M; Kuriyama T
    J Morphol; 2016 Feb; 277(2):196-203. PubMed ID: 26589888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental mechanisms of longitudinal stripes in the Japanese four-lined snake.
    Murakami A; Hasegawa M; Kuriyama T
    J Morphol; 2018 Jan; 279(1):27-36. PubMed ID: 28922458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions with iridophores and the tissue environment required for patterning melanophores and xanthophores during zebrafish adult pigment stripe formation.
    Patterson LB; Parichy DM
    PLoS Genet; 2013 May; 9(5):e1003561. PubMed ID: 23737760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish.
    Mahalwar P; Walderich B; Singh AP; Nüsslein-Volhard C
    Science; 2014 Sep; 345(6202):1362-4. PubMed ID: 25214630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of long-term chromatic adaptation on pigment cells and striped pigment patterns in the skin of the zebrafish, Danio rerio.
    Sugimoto M; Yuki M; Miyakoshi T; Maruko K
    J Exp Zool A Comp Exp Biol; 2005 Jun; 303(6):430-40. PubMed ID: 15880775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish.
    Frohnhöfer HG; Krauss J; Maischein HM; Nüsslein-Volhard C
    Development; 2013 Jul; 140(14):2997-3007. PubMed ID: 23821036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterotypic interactions regulate cell shape and density during color pattern formation in zebrafish.
    Mahalwar P; Singh AP; Fadeev A; Nüsslein-Volhard C; Irion U
    Biol Open; 2016 Nov; 5(11):1680-1690. PubMed ID: 27742608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The control of pigment cell pattern formation in the California newt, Taricha torosa.
    Tucker RP; Erickson CA
    J Embryol Exp Morphol; 1986 Sep; 97():141-68. PubMed ID: 3794598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum.
    Epperlein HH; Löfberg J
    Adv Anat Embryol Cell Biol; 1990; 118():1-99. PubMed ID: 2368640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids.
    Djurdjevič I; Kreft ME; Sušnik Bajec S
    J Anat; 2015 Nov; 227(5):583-95. PubMed ID: 26467239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructure of the dermal chromatophores in a lizard (Scincidae: Plestiodon latiscutatus) with conspicuous body and tail coloration.
    Kuriyama T; Miyaji K; Sugimoto M; Hasegawa M
    Zoolog Sci; 2006 Sep; 23(9):793-9. PubMed ID: 17043401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pigment cell pattern formation in Taricha torosa: the role of the extracellular matrix in controlling pigment cell migration and differentiation.
    Tucker RP; Erickson CA
    Dev Biol; 1986 Nov; 118(1):268-85. PubMed ID: 3770303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dermal and epidermal chromatophores of the Antarctic teleost Trematomus bernacchii.
    Obika M; Meyer-Rochow VB
    Pigment Cell Res; 1990; 3(1):33-7. PubMed ID: 2377579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deconstructing evolution of adult phenotypes: genetic analyses of kit reveal homology and evolutionary novelty during adult pigment pattern development of Danio fishes.
    Mills MG; Nuckels RJ; Parichy DM
    Development; 2007 Mar; 134(6):1081-90. PubMed ID: 17287252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexibility of pigment cell behavior permits the robustness of skin pattern formation.
    Sawada R; Aramaki T; Kondo S
    Genes Cells; 2018 Jul; 23(7):537-545. PubMed ID: 29797484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of pigment cells in cultured frog skin.
    Denefle JP; Lechaire JP
    Am J Anat; 1990 Jun; 188(2):212-20. PubMed ID: 2375284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Galanin Signaling in the Brain Regulates Color Pattern Formation in Zebrafish.
    Eskova A; Frohnhöfer HG; Nüsslein-Volhard C; Irion U
    Curr Biol; 2020 Jan; 30(2):298-303.e3. PubMed ID: 31902721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of the dermal chromatophore unit (DCU) in the tree frog Hyla arborea.
    Yasutomi M; Yamada S
    Pigment Cell Res; 1998 Aug; 11(4):198-205. PubMed ID: 9711534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zebrafish puma mutant decouples pigment pattern and somatic metamorphosis.
    Parichy DM; Turner JM
    Dev Biol; 2003 Apr; 256(2):242-57. PubMed ID: 12679100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.