These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23913514)

  • 1. Hyperspectral enhanced dark field microscopy for imaging blood cells.
    Verebes GS; Melchiorre M; Garcia-Leis A; Ferreri C; Marzetti C; Torreggiani A
    J Biophotonics; 2013 Dec; 6(11-12):960-7. PubMed ID: 23913514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection, characterization, and abundance of engineered nanoparticles in complex waters by hyperspectral imagery with enhanced Darkfield microscopy.
    Badireddy AR; Wiesner MR; Liu J
    Environ Sci Technol; 2012 Sep; 46(18):10081-8. PubMed ID: 22906208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperspectral darkfield microscopy of single hollow gold nanoparticles for biomedical applications.
    Fairbairn N; Christofidou A; Kanaras AG; Newman TA; Muskens OL
    Phys Chem Chem Phys; 2013 Mar; 15(12):4163-8. PubMed ID: 23183927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces.
    Bernhardt I; Ivanova L; Langehanenberg P; Kemper B; von Bally G
    Bioelectrochemistry; 2008 Aug; 73(2):92-6. PubMed ID: 18230419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative microscopy approach for shape-based erythrocytes characterization in anaemia.
    Das DK; Chakraborty C; Mitra B; Maiti AK; Ray AK
    J Microsc; 2013 Feb; 249(2):136-49. PubMed ID: 23252834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The correlation of human erythrocyte shape with dark-field light scattering intensity].
    Scheven C; Geyer G
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1976; 103(6):893-9. PubMed ID: 64431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated imaging, identification, and counting of similar cells from digital hologram reconstructions.
    Mihailescu M; Scarlat M; Gheorghiu A; Costescu J; Kusko M; Paun IA; Scarlat E
    Appl Opt; 2011 Jul; 50(20):3589-97. PubMed ID: 21743570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confocal backscattering spectroscopy for leukemic and normal blood cell discrimination.
    Greiner C; Hunter M; Huang P; Rius F; Georgakoudi I
    Cytometry A; 2011 Oct; 79(10):866-73. PubMed ID: 21744493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering.
    Ost V; Neukammer J; Rinneberg H
    Cytometry; 1998 Jul; 32(3):191-7. PubMed ID: 9667508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confocal backscattering-based detection of leukemic cells in flowing blood samples.
    Greiner C; Hunter M; Rius F; Huang P; Georgakoudi I
    Cytometry A; 2011 Oct; 79(10):874-83. PubMed ID: 21638765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cutaneous wound analysis using hyperspectral imaging.
    Shah SA; Bachrach N; Spear SJ; Letbetter DS; Stone RA; Dhir R; Prichard JW; Brown HG; LaFramboise WA
    Biotechniques; 2003 Feb; 34(2):408-13. PubMed ID: 12613264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.
    Li Q; Zhou M; Liu H; Wang Y; Guo F
    Appl Spectrosc; 2015 Dec; 69(12):1372-80. PubMed ID: 26554882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperspectral microscopy as an analytical tool for nanomaterials.
    Roth GA; Tahiliani S; Neu-Baker NM; Brenner SA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(4):565-79. PubMed ID: 25611199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tadpole erythrocytes: luminescent properties with dark field microscopy.
    Tyler LW; Piotrowski DC; Kaltenbach JC
    J Morphol; 1985 Jun; 184(3):343-50. PubMed ID: 3877173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman microscopy in combination with partial dark-field microscopy lights up a new path in malaria diagnostics.
    Wood BR; Hermelink A; Lasch P; Bambery KR; Webster GT; Khiavi MA; Cooke BM; Deed S; Naumann D; McNaughton D
    Analyst; 2009 Jun; 134(6):1119-25. PubMed ID: 19475137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperspectral imaging with scanning near-field optical microscopy: applications in plasmonics.
    Bouillard JS; Vilain S; Dickson W; Zayats AV
    Opt Express; 2010 Aug; 18(16):16513-9. PubMed ID: 20721040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperspectral dark-field microscopy of gold nanodisks.
    Grasseschi D; Lima FS; Nakamura M; Toma HE
    Micron; 2015 Feb; 69():15-20. PubMed ID: 25437851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow cytometric profiles, biomolecular and morphological aspects of transfixed leukocytes and red cells.
    Canonico B; Betti M; Luchetti F; Battistelli M; Falcieri E; Ferri P; Zamai L; Barnett D; Papa S
    Cytometry B Clin Cytom; 2010 Jul; 78(4):267-78. PubMed ID: 20222065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of malarial byproduct hemozoin utilizing its unique scattering properties.
    Wilson BK; Behrend MR; Horning MP; Hegg MC
    Opt Express; 2011 Jun; 19(13):12190-6. PubMed ID: 21716456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral mapping tools from the earth sciences applied to spectral microscopy data.
    Harris AT
    Cytometry A; 2006 Aug; 69(8):872-9. PubMed ID: 16969808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.