These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23913576)

  • 1. Reaction pathways for the deoxygenation of vegetable oils and related model compounds.
    Gosselink RW; Hollak SA; Chang SW; van Haveren J; de Jong KP; Bitter JH; van Es DS
    ChemSusChem; 2013 Sep; 6(9):1576-94. PubMed ID: 23913576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-temperature, selective catalytic deoxygenation of vegetable oil in supercritical fluid media.
    Kim SK; Lee HS; Hong MH; Lim JS; Kim J
    ChemSusChem; 2014 Feb; 7(2):492-500. PubMed ID: 24339322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming.
    Hollak SA; Ariëns MA; de Jong KP; van Es DS
    ChemSusChem; 2014 Apr; 7(4):1057-62. PubMed ID: 24596129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals.
    Maher KD; Bressler DC
    Bioresour Technol; 2007 Sep; 98(12):2351-68. PubMed ID: 17166713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step hydrotreatment of vegetable oil to produce high quality diesel-range alkanes.
    Wang C; Tian Z; Wang L; Xu R; Liu Q; Qu W; Ma H; Wang B
    ChemSusChem; 2012 Oct; 5(10):1974-83. PubMed ID: 22764086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic production of conjugated fatty acids and oils.
    Philippaerts A; Goossens S; Jacobs PA; Sels BF
    ChemSusChem; 2011 Jun; 4(6):684-702. PubMed ID: 21634014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic applications in the production of biodiesel from vegetable oils.
    Sivasamy A; Cheah KY; Fornasiero P; Kemausuor F; Zinoviev S; Miertus S
    ChemSusChem; 2009; 2(4):278-300. PubMed ID: 19360707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Deoxygenation of Biomass-Derived Bio-oils within Hydrogen-Modest Environments: A Review and New Insights.
    Rogers KA; Zheng Y
    ChemSusChem; 2016 Jul; 9(14):1750-72. PubMed ID: 27385663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuel purpose hydrotreating of sunflower oil on CoMo/Al2O3 catalyst.
    Krár M; Kovács S; Kalló D; Hancsók J
    Bioresour Technol; 2010 Dec; 101(23):9287-93. PubMed ID: 20655744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of fatty acid methyl ester from used vegetable cooking oil by solid reusable Mg 1-x Zn 1+x O2 catalyst.
    Olutoye MA; Hameed BH
    Bioresour Technol; 2011 Feb; 102(4):3819-26. PubMed ID: 21183335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deoxygenation of Palmitic and Lauric Acids over Pt/ZIF-67 Membrane/Zeolite 5A Bead Catalysts.
    Yang L; Carreon MA
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31993-32000. PubMed ID: 28857547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transesterification of triglycerides in high and low quality oil feeds over an HT2 hydrotalcite catalyst.
    Barakos N; Pasias S; Papayannakos N
    Bioresour Technol; 2008 Jul; 99(11):5037-42. PubMed ID: 17951052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst.
    Srifa A; Faungnawakij K; Itthibenchapong V; Viriya-Empikul N; Charinpanitkul T; Assabumrungrat S
    Bioresour Technol; 2014 Apr; 158():81-90. PubMed ID: 24583218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of kaolin-based catalysts in biodiesel production via transesterification of vegetable oils in excess methanol.
    Dang TH; Chen BH; Lee DJ
    Bioresour Technol; 2013 Oct; 145():175-81. PubMed ID: 23305893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.
    Juan JC; Kartika DA; Wu TY; Hin TY
    Bioresour Technol; 2011 Jan; 102(2):452-60. PubMed ID: 21094045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in one-stage conversion of lipid-based biomass-derived oils into fuel components - aromatics and isomerized alkanes.
    Yeletsky PM; Kukushkin RG; Yakovlev VA; Chen BH
    Fuel (Lond); 2020 Oct; 278():118255. PubMed ID: 32834073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic conversion of renewable biomass resources to fuels and chemicals.
    Serrano-Ruiz JC; West RM; Dumesic JA
    Annu Rev Chem Biomol Eng; 2010; 1():79-100. PubMed ID: 22432574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of Cu-Ce/
    Yu Q; Zhang Z; Yin Z; Kong S; Yang Z; Chen J; Zhang J
    Se Pu; 2019 Apr; 37(4):454-461. PubMed ID: 30977351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green Diesel Production by Catalytic Hydrodeoxygenation of Vegetables Oils.
    Di Vito Nolfi G; Gallucci K; Rossi L
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.
    De S; Saha B; Luque R
    Bioresour Technol; 2015 Feb; 178():108-118. PubMed ID: 25443804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.