These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23913741)

  • 1. Accurate relativistic adapted Gaussian basis sets for francium through Ununoctium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models.
    Teodoro TQ; Haiduke RL
    J Comput Chem; 2013 Oct; 34(27):2372-9. PubMed ID: 23913741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate relativistic adapted Gaussian basis sets for Cesium through Radon without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models.
    Haiduke RL; Da Silva AB
    J Comput Chem; 2006 Dec; 27(16):1970-9. PubMed ID: 17031899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An accurate relativistic universal Gaussian basis set for hydrogen through Nobelium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models.
    Haiduke RL; De Macedo LG; Da Silva AB
    J Comput Chem; 2005 Jul; 26(9):932-40. PubMed ID: 15841472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relativistic adapted Gaussian basis sets free of variational prolapse of small and medium size for hydrogen through xenon.
    Gusmão EF; Haiduke RLA
    J Comput Chem; 2022 Oct; 43(28):1901-1910. PubMed ID: 36056621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A polynomial version of the generator coordinate Dirac-Fock method.
    Haiduke RL; De Macedo LG; Barbosa RC; da Silva AB
    J Comput Chem; 2004 Nov; 25(15):1904-9. PubMed ID: 15389748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relativistic Prolapse-Free Gaussian Basis Set of Quadruple-ζ Quality: (aug-)RPF-4Z. I. The s- and p-Block Elements.
    Teodoro TQ; da Silva AB; Haiduke RL
    J Chem Theory Comput; 2014 Sep; 10(9):3800-6. PubMed ID: 26588525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic Prolapse-Free Gaussian Basis Sets of Quadruple-ζ Quality: (aug-)RPF-4Z. III. The f-Block Elements.
    Teodoro TQ; Visscher L; da Silva AB; Haiduke RL
    J Chem Theory Comput; 2017 Mar; 13(3):1094-1101. PubMed ID: 28005360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate Gaussian basis sets for atomic and molecular calculations obtained from the generator coordinate method with polynomial discretization.
    Celeste R; Maringolo MP; Comar M; Viana RB; Guimarães AR; Haiduke RL; da Silva AB
    J Mol Model; 2015 Oct; 21(10):274. PubMed ID: 26419974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaussian-type function set without prolapse for the Dirac-Fock-Roothaan equation (II): 80Hg through 103Lr.
    Yamamoto S; Tatewaki H; Watanabe Y
    J Chem Phys; 2006 Aug; 125(5):054106. PubMed ID: 16942202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaussian-type function set without prolapse 1H through 83Bi for the Dirac-Fock-Roothaan equation.
    Tatewaki H; Watanabe Y
    J Chem Phys; 2004 Sep; 121(10):4528-33. PubMed ID: 15332882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaussian-type function set without prolapse for the Dirac-Fock-Roothaan equation.
    Tatewaki H; Watanabe Y
    J Comput Chem; 2003 Nov; 24(15):1823-8. PubMed ID: 14515364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation, contraction, and polarisation of Gaussian basis sets for atomic and molecular calculations using the generator coordinate method with polynomial discretisation: atoms from Na through Cl.
    R Guimarães A; Barbosa RC; Mora Tello AC; P da Silva A; A Alves JM; Palhares Maringolo M; B F da Silva A
    Phys Chem Chem Phys; 2021 Aug; 23(31):16989-16997. PubMed ID: 34338697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale Dirac-Fock-Breit method using density fitting and 2-spinor basis functions.
    Kelley MS; Shiozaki T
    J Chem Phys; 2013 May; 138(20):204113. PubMed ID: 23742460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals.
    Przybytek M; Helgaker T
    J Chem Phys; 2013 Aug; 139(5):054114. PubMed ID: 23927250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On polarization functions for Gaussian basis sets.
    Maringolo MP; Tello ACM; Guimarães AR; Alves JMA; das Chagas Alves Lima F; Longo E; da Silva ABF
    J Mol Model; 2020 Sep; 26(10):293. PubMed ID: 32995927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to Gaussian basis sets.
    Inada Y; Orita H
    J Comput Chem; 2008 Jan; 29(2):225-32. PubMed ID: 17565500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized Slater-type basis sets for the elements 1-118.
    Van Lenthe E; Baerends EJ
    J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.
    Heaps CW; Mazziotti DA
    J Chem Phys; 2016 Apr; 144(16):164108. PubMed ID: 27131532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relativistic correlating basis sets for the sixth-period d-block atoms from Lu to Hg.
    Osanai Y; Noro T; Miyoshi E; Sekiya M; Koga T
    J Chem Phys; 2004 Apr; 120(14):6408-13. PubMed ID: 15267529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements.
    Dyall KG
    J Phys Chem A; 2009 Nov; 113(45):12638-44. PubMed ID: 19670829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.