These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23913741)

  • 21. High-accuracy calculation of nuclear quadrupole moments of atomic halogens.
    Yakobi H; Eliav E; Visscher L; Kaldor U
    J Chem Phys; 2007 Feb; 126(5):054301. PubMed ID: 17302471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects.
    Hangele T; Dolg M; Hanrath M; Cao X; Schwerdtfeger P
    J Chem Phys; 2012 Jun; 136(21):214105. PubMed ID: 22697528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlation Consistent Gaussian Basis Sets for H, B-Ne with Dirac-Fock AREP Pseudopotentials: Applications in Quantum Monte Carlo Calculations.
    Xu J; Deible MJ; Peterson KA; Jordan KD
    J Chem Theory Comput; 2013 May; 9(5):2170-8. PubMed ID: 26583711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation energies for He isoelectronic sequence with Z=2-116 from four-component relativistic configuration interactions.
    Watanabe Y; Tatewaki H
    J Chem Phys; 2005 Aug; 123(7):074322. PubMed ID: 16229585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Basis-set quality and basis-set bias in molecular property calculations.
    Rappoport D
    Chemphyschem; 2011 Dec; 12(17):3404-13. PubMed ID: 21954117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relativistic density functional calculations using two-spinor minimax finite-element method and linear combination of atomic orbitals for ZnO, CdO, HgO, UubO and Cu2, Ag2, Au2, Rg2.
    Kullie O; Zhang H; Kolb J; Kolb D
    J Chem Phys; 2006 Dec; 125(24):244303. PubMed ID: 17199347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gaussian basis set of double zeta quality for atoms K through Kr: application in DFT calculations of molecular properties.
    Camiletti GG; Machado SF; Jorge FE
    J Comput Chem; 2008 Nov; 29(14):2434-44. PubMed ID: 18612996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relativistic Prolapse-Free Gaussian Basis Set of Quadruple-ζ Quality: (aug-)RPF-4Z. II. The d-Block Elements.
    Teodoro TQ; Ferreira da Silva AB; Haiduke RL
    J Chem Theory Comput; 2014 Nov; 10(11):4761-4. PubMed ID: 26584362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Explicitly correlated gaussian calculations of the 2D Rydberg states of the boron atom.
    Sharkey KL; Bubin S; Adamowicz L
    J Chem Phys; 2012 Aug; 137(6):064313. PubMed ID: 22897279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Basis set effects on the hyperpolarizability of CHCl3: Gaussian-type orbitals, numerical basis sets and real-space grids.
    Vila FD; Strubbe DA; Takimoto Y; Andrade X; Rubio A; Louie SG; Rehr JJ
    J Chem Phys; 2010 Jul; 133(3):034111. PubMed ID: 20649312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dirac-Fock calculations on molecules in an adaptive multiwavelet basis.
    Anderson J; Sundahl B; Harrison R; Beylkin G
    J Chem Phys; 2019 Dec; 151(23):234112. PubMed ID: 31864249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular structure calculations: a unified quantum mechanical description of electrons and nuclei using explicitly correlated Gaussian functions and the global vector representation.
    Mátyus E; Reiher M
    J Chem Phys; 2012 Jul; 137(2):024104. PubMed ID: 22803525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate Electron Densities at Nuclei Using Small Ramp-Gaussian Basis Sets.
    McKemmish LK; Gilbert AT
    J Chem Theory Comput; 2015 Aug; 11(8):3679-83. PubMed ID: 26574451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relativistic electronic structure theory.
    Nakajima T; Yanai T; Hirao K
    J Comput Chem; 2002 Jun; 23(8):847-60. PubMed ID: 12012361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward accurate thermochemical models for transition metals: G3Large basis sets for atoms Sc-Zn.
    Mayhall NJ; Raghavachari K; Redfern PC; Curtiss LA; Rassolov V
    J Chem Phys; 2008 Apr; 128(14):144122. PubMed ID: 18412438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relativistic correlating basis sets for actinide atoms from 90Th to 103Lr.
    Noro T; Sekiya M; Osanai Y; Koga T; Matsuyama H
    J Comput Chem; 2007 Dec; 28(16):2511-6. PubMed ID: 17508413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An ab initio molecular orbital study of the nuclear volume effects in uranium isotope fractionations.
    Abe M; Suzuki T; Fujii Y; Hada M; Hirao K
    J Chem Phys; 2008 Oct; 129(16):164309. PubMed ID: 19045268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nuclear electric quadrupole moment of gold.
    Belpassi L; Tarantelli F; Sgamellotti A; Quiney HM; van Stralen JN; Visscher L
    J Chem Phys; 2007 Feb; 126(6):064314. PubMed ID: 17313222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scalar relativistic calculations of hyperfine coupling tensors using the Douglas-Kroll-Hess method with a finite-size nucleus model.
    Malkin E; Malkin I; Malkina OL; Malkin VG; Kaupp M
    Phys Chem Chem Phys; 2006 Sep; 8(35):4079-85. PubMed ID: 17028696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.