These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Neuronally micro-conotoxins from Conus striatus utilize an alpha-helical motif to target mammalian sodium channels. Schroeder CI; Ekberg J; Nielsen KJ; Adams D; Loughnan ML; Thomas L; Adams DJ; Alewood PF; Lewis RJ J Biol Chem; 2008 Aug; 283(31):21621-8. PubMed ID: 18522941 [TBL] [Abstract][Full Text] [Related]
3. Interactions of disulfide-deficient selenocysteine analogs of μ-conotoxin BuIIIB with the α-subunit of the voltage-gated sodium channel subtype 1.3. Green BR; Zhang MM; Chhabra S; Robinson SD; Wilson MJ; Redding A; Olivera BM; Yoshikami D; Bulaj G; Norton RS FEBS J; 2014 Jul; 281(13):2885-98. PubMed ID: 24814369 [TBL] [Abstract][Full Text] [Related]
4. Structure, dynamics, and selectivity of the sodium channel blocker mu-conotoxin SIIIA. Yao S; Zhang MM; Yoshikami D; Azam L; Olivera BM; Bulaj G; Norton RS Biochemistry; 2008 Oct; 47(41):10940-9. PubMed ID: 18798648 [TBL] [Abstract][Full Text] [Related]
5. Structural and functional insights into the inhibition of human voltage-gated sodium channels by μ-conotoxin KIIIA disulfide isomers. Tran HNT; McMahon KL; Deuis JR; Vetter I; Schroeder CI J Biol Chem; 2022 Mar; 298(3):101728. PubMed ID: 35167877 [TBL] [Abstract][Full Text] [Related]
6. A novel conotoxin from Conus striatus, mu-SIIIA, selectively blocking rat tetrodotoxin-resistant sodium channels. Wang CZ; Zhang H; Jiang H; Lu W; Zhao ZQ; Chi CW Toxicon; 2006 Jan; 47(1):122-32. PubMed ID: 16325217 [TBL] [Abstract][Full Text] [Related]
7. NMR Structure of μ-Conotoxin GIIIC: Leucine 18 Induces Local Repacking of the N-Terminus Resulting in Reduced Na Harvey PJ; Kurniawan ND; Finol-Urdaneta RK; McArthur JR; Van Lysebetten D; Dash TS; Hill JM; Adams DJ; Durek T; Craik DJ Molecules; 2018 Oct; 23(10):. PubMed ID: 30360356 [TBL] [Abstract][Full Text] [Related]
8. N- and C-terminal extensions of μ-conotoxins increase potency and selectivity for neuronal sodium channels. Schroeder CI; Adams D; Thomas L; Alewood PF; Lewis RJ Biopolymers; 2012; 98(2):161-5. PubMed ID: 22733528 [TBL] [Abstract][Full Text] [Related]
9. Novel conotoxins from Conus striatus and Conus kinoshitai selectively block TTX-resistant sodium channels. Bulaj G; West PJ; Garrett JE; Watkins M; Zhang MM; Norton RS; Smith BJ; Yoshikami D; Olivera BM Biochemistry; 2005 May; 44(19):7259-65. PubMed ID: 15882064 [TBL] [Abstract][Full Text] [Related]
10. Subtype-specific block of voltage-gated K Leipold E; Ullrich F; Thiele M; Tietze AA; Terlau H; Imhof D; Heinemann SH Biochem Biophys Res Commun; 2017 Jan; 482(4):1135-1140. PubMed ID: 27916464 [TBL] [Abstract][Full Text] [Related]
11. µ-Conotoxins Targeting the Human Voltage-Gated Sodium Channel Subtype Na McMahon KL; Tran HNT; Deuis JR; Craik DJ; Vetter I; Schroeder CI Toxins (Basel); 2022 Aug; 14(9):. PubMed ID: 36136538 [TBL] [Abstract][Full Text] [Related]
12. Molecular basis for pore blockade of human Na Pan X; Li Z; Huang X; Huang G; Gao S; Shen H; Liu L; Lei J; Yan N Science; 2019 Mar; 363(6433):1309-1313. PubMed ID: 30765605 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of μ-conotoxin PIIIA binding to the voltage-gated Na+ channel NaV1.4. Chen R; Robinson A; Chung SH PLoS One; 2014; 9(3):e93267. PubMed ID: 24676211 [TBL] [Abstract][Full Text] [Related]
14. Structural Basis for the Inhibition of Voltage-gated Sodium Channels by Conotoxin μO§-GVIIJ. Green BR; Gajewiak J; Chhabra S; Skalicky JJ; Zhang MM; Rivier JE; Bulaj G; Olivera BM; Yoshikami D; Norton RS J Biol Chem; 2016 Mar; 291(13):7205-20. PubMed ID: 26817840 [TBL] [Abstract][Full Text] [Related]
15. Isolation and structure-activity of mu-conotoxin TIIIA, a potent inhibitor of tetrodotoxin-sensitive voltage-gated sodium channels. Lewis RJ; Schroeder CI; Ekberg J; Nielsen KJ; Loughnan M; Thomas L; Adams DA; Drinkwater R; Adams DJ; Alewood PF Mol Pharmacol; 2007 Mar; 71(3):676-85. PubMed ID: 17142296 [TBL] [Abstract][Full Text] [Related]
16. Molecular determinants for the subtype specificity of μ-conotoxin SIIIA targeting neuronal voltage-gated sodium channels. Leipold E; Markgraf R; Miloslavina A; Kijas M; Schirmeyer J; Imhof D; Heinemann SH Neuropharmacology; 2011; 61(1-2):105-11. PubMed ID: 21419143 [TBL] [Abstract][Full Text] [Related]
17. Multiple, distributed interactions of μ-conotoxin PIIIA associated with broad targeting among voltage-gated sodium channels. McArthur JR; Ostroumov V; Al-Sabi A; McMaster D; French RJ Biochemistry; 2011 Jan; 50(1):116-24. PubMed ID: 21110521 [TBL] [Abstract][Full Text] [Related]
18. Discovery, Pharmacological Characterisation and NMR Structure of the Novel µ-Conotoxin SxIIIC, a Potent and Irreversible Na McMahon KL; Tran HNT; Deuis JR; Lewis RJ; Vetter I; Schroeder CI Biomedicines; 2020 Oct; 8(10):. PubMed ID: 33023152 [TBL] [Abstract][Full Text] [Related]
19. Computational Design of High-Affinity Blockers for Sodium Channel Na Meng G; Kuyucak S Mar Drugs; 2022 Feb; 20(2):. PubMed ID: 35200683 [TBL] [Abstract][Full Text] [Related]
20. Systematic study of binding of μ-conotoxins to the sodium channel NaV1.4. Mahdavi S; Kuyucak S Toxins (Basel); 2014 Dec; 6(12):3454-70. PubMed ID: 25529306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]