These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 23913976)
21. Interest of a chemometric approach in understanding the retention behaviour of three columns in hydrophilic interaction liquid chromatography: application to the separation of glycerol carbonate, glycerol and urea. Fourdinier M; Bostyn S; Delépée R; Fauduet H Talanta; 2010 Jun; 81(4-5):1281-7. PubMed ID: 20441896 [TBL] [Abstract][Full Text] [Related]
22. Origin of the selectivity differences of aromatic alcohols and amines of different Kulsing C; Nolvachai Y; Matyska MT; Pesek JJ; Topete J; Boysen RI; Hearn MTW Anal Chim Acta X; 2019 Mar; 1():100003. PubMed ID: 33186417 [TBL] [Abstract][Full Text] [Related]
23. Chromatographic behavior of selected antibiotic drugs supported by quantitative structure-retention relationships. Szultka-Mlynska M; Buszewski B J Chromatogr A; 2016 Dec; 1478():50-59. PubMed ID: 27916390 [TBL] [Abstract][Full Text] [Related]
24. Separation of carbohydrates using hydrophilic interaction liquid chromatography. Fu Q; Liang T; Li Z; Xu X; Ke Y; Jin Y; Liang X Carbohydr Res; 2013 Sep; 379():13-7. PubMed ID: 23835469 [TBL] [Abstract][Full Text] [Related]
25. [Hydrophilic interaction chromatography on silica column: retention mechanism and its influential factors]. Li R; Yuan Q; Huang Y Se Pu; 2014 Jul; 32(7):675-81. PubMed ID: 25255557 [TBL] [Abstract][Full Text] [Related]
26. Isomer selectivity of one- and two-dimensional approaches of mixed-mode and hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry for sugar phosphates of glycolysis and pentose phosphate pathways. Su M; Serafimov K; Li P; Knappe C; Lämmerhofer M J Chromatogr A; 2023 Jan; 1688():463727. PubMed ID: 36566570 [TBL] [Abstract][Full Text] [Related]
27. Volume and composition of semi-adsorbed stationary phases in hydrophilic interaction liquid chromatography. Comparison of water adsorption in common stationary phases and eluents. Redón L; Subirats X; Rosés M J Chromatogr A; 2021 Oct; 1656():462543. PubMed ID: 34571282 [TBL] [Abstract][Full Text] [Related]
28. Characterization and use of hydrophilic interaction liquid chromatography type stationary phases in supercritical fluid chromatography. West C; Khater S; Lesellier E J Chromatogr A; 2012 Aug; 1250():182-95. PubMed ID: 22647190 [TBL] [Abstract][Full Text] [Related]
29. Comparison of underivatized silica and zwitterionic sulfobetaine hydrophilic interaction liquid chromatography stationary phases for global metabolomics of human plasma. Sonnenberg RA; Naz S; Cougnaud L; Vuckovic D J Chromatogr A; 2019 Dec; 1608():460419. PubMed ID: 31439439 [TBL] [Abstract][Full Text] [Related]
30. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode. Wu J; Bicker W; Lindner W J Sep Sci; 2008 May; 31(9):1492-503. PubMed ID: 18461572 [TBL] [Abstract][Full Text] [Related]
31. Retention characteristics of poly(N-(1H-tetrazole-5-yl)-methacrylamide)-bonded stationary phase in hydrophilic interaction chromatography. Fu X; Cebo M; Ikegami T; Lämmerhofer M J Chromatogr A; 2020 Jan; 1609():460500. PubMed ID: 31515078 [TBL] [Abstract][Full Text] [Related]
32. Preparation and chromatographic evaluation of a cysteine-bonded zwitterionic hydrophilic interaction liquid chromatography stationary phase. Shen A; Guo Z; Cai X; Xue X; Liang X J Chromatogr A; 2012 Mar; 1228():175-82. PubMed ID: 22099229 [TBL] [Abstract][Full Text] [Related]
33. Hydrophilic interaction chromatography separation mechanisms of tetracyclines on amino-bonded silica column. Li R; Zhang Y; Lee CC; Liu L; Huang Y J Sep Sci; 2011 Jul; 34(13):1508-16. PubMed ID: 21598382 [TBL] [Abstract][Full Text] [Related]
34. Preparation and characterization of polymethacrylate monolithic capillary columns with dual hydrophilic interaction reversed-phase retention mechanism for polar compounds. Urban J; Skeríková V; Jandera P; Kubícková R; Pospísilová M J Sep Sci; 2009 Aug; 32(15-16):2530-43. PubMed ID: 19585529 [TBL] [Abstract][Full Text] [Related]
35. Retention of stevioside polar compounds on a sulfonic acid-functionalized stationary phase. Li R; Sun W; Xiao X; Chen B; Wei Y J Chromatogr A; 2020 Jun; 1620():460978. PubMed ID: 32106966 [TBL] [Abstract][Full Text] [Related]
36. Hydrophilic interaction liquid chromatography in the separation of a moderately lipophilic drug from its highly polar metabolites--the cardioprotectant dexrazoxane as a model case. Kovaříková P; Stariat J; Klimeš J; Hrušková K; Vávrová K J Chromatogr A; 2011 Jan; 1218(3):416-26. PubMed ID: 21168142 [TBL] [Abstract][Full Text] [Related]
37. Facile fabrication of silica@covalent organic polymers core-shell composites as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase/ion-exchange chromatography. Chen J; Peng H; Zhang Z; Zhang Z; Ni R; Chen Y; Chen P; Peng J Talanta; 2021 Oct; 233():122524. PubMed ID: 34215027 [TBL] [Abstract][Full Text] [Related]
38. Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC). Hao Z; Xiao B; Weng N J Sep Sci; 2008 May; 31(9):1449-64. PubMed ID: 18435508 [TBL] [Abstract][Full Text] [Related]
39. Comparison of human IgG glycopeptides separation using mixed-mode hydrophilic interaction/ion-exchange liquid chromatography and reversed-phase mode. Molnarova K; Duris A; Jecmen T; Kozlik P Anal Bioanal Chem; 2021 Jul; 413(16):4321-4328. PubMed ID: 34002272 [TBL] [Abstract][Full Text] [Related]
40. Determination of pterins in urine by HPLC with UV and fluorescent detection using different types of chromatographic stationary phases (HILIC, RP C8, RP C18). Kośliński P; Jarzemski P; Markuszewski MJ; Kaliszan R J Pharm Biomed Anal; 2014 Mar; 91():37-45. PubMed ID: 24412699 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]