BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 23914167)

  • 21. An essential role of SVZ progenitors in cortical folding in gyrencephalic mammals.
    Toda T; Shinmyo Y; Dinh Duong TA; Masuda K; Kawasaki H
    Sci Rep; 2016 Jul; 6():29578. PubMed ID: 27403992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Subventricular Zone: A Key Player in Human Neocortical Development.
    Ortega JA; Memi F; Radonjic N; Filipovic R; Bagasrawala I; Zecevic N; Jakovcevski I
    Neuroscientist; 2018 Apr; 24(2):156-170. PubMed ID: 29254416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal.
    Fietz SA; Lachmann R; Brandl H; Kircher M; Samusik N; Schröder R; Lakshmanaperumal N; Henry I; Vogt J; Riehn A; Distler W; Nitsch R; Enard W; Pääbo S; Huttner WB
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11836-41. PubMed ID: 22753484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents.
    Martínez-Cerdeño V; Cunningham CL; Camacho J; Antczak JL; Prakash AN; Cziep ME; Walker AI; Noctor SC
    PLoS One; 2012; 7(1):e30178. PubMed ID: 22272298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sonic hedgehog signaling: A conserved mechanism for the expansion of outer radial glia and intermediate progenitor cells and for the growth and folding of the neocortex.
    Han YG
    Neurogenesis (Austin); 2016; 3(1):e1242957. PubMed ID: 28255571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic and developmental homology in amniote brains. Toward conciliating radical views of brain evolution.
    Aboitiz F
    Brain Res Bull; 2011 Feb; 84(2):125-36. PubMed ID: 21146594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human-specific
    Heide M; Haffner C; Murayama A; Kurotaki Y; Shinohara H; Okano H; Sasaki E; Huttner WB
    Science; 2020 Jul; 369(6503):546-550. PubMed ID: 32554627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fine-tuning of neurogenesis is essential for the evolutionary expansion of the cerebral cortex.
    Poluch S; Juliano SL
    Cereb Cortex; 2015 Feb; 25(2):346-64. PubMed ID: 23968831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human-specific genomic signatures of neocortical expansion.
    Florio M; Borrell V; Huttner WB
    Curr Opin Neurobiol; 2017 Feb; 42():33-44. PubMed ID: 27912138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic Mechanisms Underlying Cortical Evolution in Mammals.
    Franchini LF
    Front Cell Dev Biol; 2021; 9():591017. PubMed ID: 33659245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. YAP Activity Is Necessary and Sufficient for Basal Progenitor Abundance and Proliferation in the Developing Neocortex.
    Kostic M; Paridaen JTML; Long KR; Kalebic N; Langen B; Grübling N; Wimberger P; Kawasaki H; Namba T; Huttner WB
    Cell Rep; 2019 Apr; 27(4):1103-1118.e6. PubMed ID: 31018127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sonic hedgehog expands neural stem cells in the neocortical region leading to an expanded and wrinkled neocortical surface.
    Shqirat M; Kinoshita A; Kageyama R; Ohtsuka T
    Genes Cells; 2021 Jun; 26(6):399-410. PubMed ID: 33811429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radial glia require PDGFD-PDGFRβ signalling in human but not mouse neocortex.
    Lui JH; Nowakowski TJ; Pollen AA; Javaherian A; Kriegstein AR; Oldham MC
    Nature; 2014 Nov; 515(7526):264-8. PubMed ID: 25391964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors.
    Reillo I; Borrell V
    Cereb Cortex; 2012 Sep; 22(9):2039-54. PubMed ID: 21988826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the role of the outer subventricular zone during cortical folding through a physics-based model.
    Zarzor MS; Blumcke I; Budday S
    Elife; 2023 Apr; 12():. PubMed ID: 37043266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative analysis of neocortical gyrencephaly in African elephants (Loxodonta africana) and six species of cetaceans: comparison with other mammals.
    Manger PR; Prowse M; Haagensen M; Hemingway J
    J Comp Neurol; 2012 Aug; 520(11):2430-9. PubMed ID: 22237903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural progenitor cells and their role in the development and evolutionary expansion of the neocortex.
    Namba T; Huttner WB
    Wiley Interdiscip Rev Dev Biol; 2017 Jan; 6(1):. PubMed ID: 27865053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity.
    Fame RM; MacDonald JL; Dunwoodie SL; Takahashi E; Macklis JD
    J Neurosci; 2016 Jun; 36(24):6403-19. PubMed ID: 27307230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolutionary conservation of neocortical neurogenetic program in the mammals and birds.
    Suzuki IK; Hirata T
    Bioarchitecture; 2012; 2(4):124-9. PubMed ID: 22960728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Extracellular Matrix in the Evolution of Cortical Development and Folding.
    Amin S; Borrell V
    Front Cell Dev Biol; 2020; 8():604448. PubMed ID: 33344456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.