These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23914296)

  • 41. Materials characterization of Feraheme/ferumoxytol and preliminary evaluation of its potential for magnetic fluid hyperthermia.
    Bullivant JP; Zhao S; Willenberg BJ; Kozissnik B; Batich CD; Dobson J
    Int J Mol Sci; 2013 Aug; 14(9):17501-10. PubMed ID: 24065092
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and characterization of iron oxide nanoparticles/carboxymethyl cellulose core-shell nanohybrids for killing cancer cells in vitro.
    Leonel AG; Mansur HS; Mansur AAP; Caires A; Carvalho SM; Krambrock K; Outon LEF; Ardisson JD
    Int J Biol Macromol; 2019 Jul; 132():677-691. PubMed ID: 30951776
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.
    Shaterabadi Z; Nabiyouni G; Soleymani M
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111274. PubMed ID: 32919638
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal analysis of magnetic nanoparticle in alternating magnetic field on human HCT-116 colon cancer cell line.
    Attar MM; Amanpour S; Haghpanahi M; Haddadi M; Rezaei G; Muhammadnejad S; HajiAkhoundzadeh M; Barati T; Sadeghi F; Javadi S
    Int J Hyperthermia; 2016 Dec; 32(8):858-867. PubMed ID: 27418409
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Folic acid-capped PEGylated magnetic nanoparticles enter cancer cells mostly via clathrin-dependent endocytosis.
    Allard-Vannier E; Hervé-Aubert K; Kaaki K; Blondy T; Shebanova A; Shaitan KV; Ignatova AA; Saboungi ML; Feofanov AV; Chourpa I
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1578-1586. PubMed ID: 27919801
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conjugation of superparamagnetic iron oxide nanoparticles and curcumin photosensitizer to assist in photodynamic therapy.
    de Santana WMOS; Caetano BL; de Annunzio SR; Pulcinelli SH; Ménager C; Fontana CR; Santilli CV
    Colloids Surf B Biointerfaces; 2020 Dec; 196():111297. PubMed ID: 32791474
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field.
    Hamdous Y; Chebbi I; Mandawala C; Le Fèvre R; Guyot F; Seksek O; Alphandéry E
    J Nanobiotechnology; 2017 Oct; 15(1):74. PubMed ID: 29041937
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How a grafting anchor tailors the cellular uptake and in vivo fate of dendronized iron oxide nanoparticles.
    Bordeianu C; Parat A; Affolter-Zbaraszczuk C; Muller RN; Boutry S; Begin-Colin S; Meyer F; Laurent S; Felder-Flesch D
    J Mater Chem B; 2017 Jul; 5(26):5152-5164. PubMed ID: 32264101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance.
    Sugumaran PJ; Liu XL; Herng TS; Peng E; Ding J
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22703-22713. PubMed ID: 31244027
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modulation of the Magnetic Hyperthermia Response Using Different Superparamagnetic Iron Oxide Nanoparticle Morphologies.
    Reyes-Ortega F; Delgado ÁV; Iglesias GR
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33802441
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.
    Kalambur VS; Longmire EK; Bischof JC
    Langmuir; 2007 Nov; 23(24):12329-36. PubMed ID: 17960940
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles.
    Sharma A; Cornejo C; Mihalic J; Geyh A; Bordelon DE; Korangath P; Westphal F; Gruettner C; Ivkov R
    Sci Rep; 2018 Mar; 8(1):4916. PubMed ID: 29559734
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy.
    Mashhadi Malekzadeh A; Ramazani A; Tabatabaei Rezaei SJ; Niknejad H
    J Colloid Interface Sci; 2017 Mar; 490():64-73. PubMed ID: 27870961
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of interaction of magnetic nanoparticles with breast cancer cells.
    Calero M; Chiappi M; Lazaro-Carrillo A; Rodríguez MJ; Chichón FJ; Crosbie-Staunton K; Prina-Mello A; Volkov Y; Villanueva A; Carrascosa JL
    J Nanobiotechnology; 2015 Feb; 13():16. PubMed ID: 25880445
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Manganese Ferrite Nanoparticles (MnFe
    Islam K; Haque M; Kumar A; Hoq A; Hyder F; Hoque SM
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33233590
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cytotoxicity, cellular uptake and apoptotic responses in human coronary artery endothelial cells exposed to ultrasmall superparamagnetic iron oxide nanoparticles.
    Palacios-Hernandez T; Diaz-Diestra DM; Nguyen AK; Skoog SA; Vijaya Chikkaveeraiah B; Tang X; Wu Y; Petrochenko PE; Sussman EM; Goering PL
    J Appl Toxicol; 2020 Jul; 40(7):918-930. PubMed ID: 32080871
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of Hyaluronic Acid-Conjugated Fe
    Lee CR; Kim GG; Park SB; Kim SW
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577662
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications.
    Barrera C; Herrera AP; Bezares N; Fachini E; Olayo-Valles R; Hinestroza JP; Rinaldi C
    J Colloid Interface Sci; 2012 Jul; 377(1):40-50. PubMed ID: 22513169
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Preparation and characterization of citric acid-modified superparamagnetic iron oxide nanoparticles].
    Wang H; Qin XY; Li ZY; Zheng ZZ; Fan TY
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):340-346. PubMed ID: 29643537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.