These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 23914308)

  • 1. Catalysis in Enzymatic Decarboxylations: Comparison of Selected Cofactor-dependent and Cofactor-independent Examples.
    Jordan F; Patel H
    ACS Catal; 2013 Jul; 3(7):1601-1617. PubMed ID: 23914308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orotidine 5'-Monophosphate Decarboxylase: Probing the Limits of the Possible for Enzyme Catalysis.
    Richard JP; Amyes TL; Reyes AC
    Acc Chem Res; 2018 Apr; 51(4):960-969. PubMed ID: 29595949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalysis by orotidine 5'-monophosphate decarboxylase: effect of 5-fluoro and 4'-substituents on the decarboxylation of two-part substrates.
    Goryanova B; Spong K; Amyes TL; Richard JP
    Biochemistry; 2013 Jan; 52(3):537-46. PubMed ID: 23276261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homologous (beta/alpha)8-barrel enzymes that catalyze unrelated reactions: orotidine 5'-monophosphate decarboxylase and 3-keto-L-gulonate 6-phosphate decarboxylase.
    Wise E; Yew WS; Babbitt PC; Gerlt JA; Rayment I
    Biochemistry; 2002 Mar; 41(12):3861-9. PubMed ID: 11900527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates.
    Schütz A; Golbik R; König S; Hübner G; Tittmann K
    Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal ion inhibition of nonenzymatic pyridoxal phosphate catalyzed decarboxylation and transamination.
    Zabinski RF; Toney MD
    J Am Chem Soc; 2001 Jan; 123(2):193-8. PubMed ID: 11456503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: mechanistic evidence for a proton relay system in the active site of 3-keto-L-gulonate 6-phosphate decarboxylase.
    Yew WS; Wise EL; Rayment I; Gerlt JA
    Biochemistry; 2004 Jun; 43(21):6427-37. PubMed ID: 15157077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes.
    Mehta PK; Christen P
    Adv Enzymol Relat Areas Mol Biol; 2000; 74():129-84. PubMed ID: 10800595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetrahedral intermediates in thiamin diphosphate-dependent decarboxylations exist as a 1',4'-imino tautomeric form of the coenzyme, unlike the michaelis complex or the free coenzyme.
    Nemeria N; Baykal A; Joseph E; Zhang S; Yan Y; Furey W; Jordan F
    Biochemistry; 2004 Jun; 43(21):6565-75. PubMed ID: 15157089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic Catalysis of Proton Transfer and Decarboxylation Reactions.
    Richard JP
    Pure Appl Chem; 2011 Jul; 83(8):1555-1565. PubMed ID: 23505326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From cofactor to enzymes. The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes.
    Christen P; Mehta PK
    Chem Rec; 2001; 1(6):436-47. PubMed ID: 11933250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: enhancing the promiscuous D-arabino-hex-3-ulose 6-phosphate synthase reaction catalyzed by 3-keto-L-gulonate 6-phosphate decarboxylase.
    Yew WS; Akana J; Wise EL; Rayment I; Gerlt JA
    Biochemistry; 2005 Feb; 44(6):1807-15. PubMed ID: 15697206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysine-69 plays a key role in catalysis by ornithine decarboxylase through acceleration of the Schiff base formation, decarboxylation, and product release steps.
    Osterman AL; Brooks HB; Jackson L; Abbott JJ; Phillips MA
    Biochemistry; 1999 Sep; 38(36):11814-26. PubMed ID: 10512638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evidence for a 1,2-enediolate intermediate in the reaction catalyzed by 3-keto-L-gulonate 6-phosphate decarboxylase, a member of the orotidine 5'-monophosphate decarboxylase suprafamily.
    Wise EL; Yew WS; Gerlt JA; Rayment I
    Biochemistry; 2003 Oct; 42(42):12133-42. PubMed ID: 14567674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state kinetics and molecular evolution of Escherichia coli MenD [(1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase], an anomalous thiamin diphosphate-dependent decarboxylase-carboligase.
    Bhasin M; Billinsky JL; Palmer DR
    Biochemistry; 2003 Nov; 42(46):13496-504. PubMed ID: 14621995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of thiamin-bound intermediates and microscopic rate constants for their interconversion on 1-deoxy-D-xylulose 5-phosphate synthase: 600-fold rate acceleration of pyruvate decarboxylation by D-glyceraldehyde-3-phosphate.
    Patel H; Nemeria NS; Brammer LA; Freel Meyers CL; Jordan F
    J Am Chem Soc; 2012 Nov; 134(44):18374-9. PubMed ID: 23072514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Studies of the Electronic Absorption Spectra of Thiamin Diphosphate in Pyruvate Decarboxylase.
    Paulikat M; Wechsler C; Tittmann K; Mata RA
    Biochemistry; 2017 Apr; 56(13):1854-1864. PubMed ID: 28296385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiamin diphosphate in biological chemistry: analogues of thiamin diphosphate in studies of enzymes and riboswitches.
    Agyei-Owusu K; Leeper FJ
    FEBS J; 2009 Jun; 276(11):2905-16. PubMed ID: 19490097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular evolution of B6 enzymes: binding of pyridoxal-5'-phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme.
    Vacca RA; Giannattasio S; Capitani G; Marra E; Christen P
    BMC Biochem; 2008 Jun; 9():17. PubMed ID: 18565210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.