BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 23914536)

  • 21. Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor.
    Broman E; Jawad A; Wu X; Christel S; Ni G; Lopez-Fernandez M; Sundkvist JE; Dopson M
    Biodegradation; 2017 Aug; 28(4):287-301. PubMed ID: 28577026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Examining thiosulfate-driven autotrophic denitrification through respirometry.
    Mora M; Guisasola A; Gamisans X; Gabriel D
    Chemosphere; 2014 Oct; 113():1-8. PubMed ID: 25065782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of elemental sulfur and thiosulfate as electron sources for water denitrification.
    Sahinkaya E; Dursun N
    Bioprocess Biosyst Eng; 2015 Mar; 38(3):531-41. PubMed ID: 25266591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemolithotrophic denitrification with elemental sulfur for groundwater treatment.
    Sierra-Alvarez R; Beristain-Cardoso R; Salazar M; Gómez J; Razo-Flores E; Field JA
    Water Res; 2007 Mar; 41(6):1253-62. PubMed ID: 17296214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water.
    Liu H; Jiang W; Wan D; Qu J
    J Hazard Mater; 2009 Sep; 169(1-3):23-8. PubMed ID: 19369001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Manganese sulfide-sulfur and limestone autotrophic denitrification system for deep and efficient nitrate removal: Feasibility, performance and mechanism.
    Li Y; Chen T; Chen W; Liu H; Xie Q; Zhou Y; Chen D; Zou X
    Bioresour Technol; 2024 Jul; 403():130874. PubMed ID: 38782191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using cold-adapted river-bottom sediment as seed sludge for sulfur-based autotrophic denitrification operated at mesophilic and psychrophilic temperatures.
    Xing W; He Z; Wang Y; Cai W; Jia F; Yao H
    Sci Total Environ; 2020 Sep; 735():139345. PubMed ID: 32480146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biogas desulfurization using autotrophic denitrification process.
    Bayrakdar A; Tilahun E; Calli B
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):939-48. PubMed ID: 26428238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of two combined bioelectrochemical and sulfur autotrophic denitrification processes for drinking water treatment.
    Wang H; Qu J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Jul; 38(7):1269-84. PubMed ID: 12916851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: performance and bacterial community structure.
    Zhang L; Zhang C; Hu C; Liu H; Qu J
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2815-27. PubMed ID: 25343972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling of sulfur(thiosulfate)-driven denitratation and anammox process to treat nitrate and ammonium contained wastewater.
    Deng YF; Ekama GA; Cui YX; Tang CJ; van Loosdrecht MCM; Chen GH; Wu D
    Water Res; 2019 Oct; 163():114854. PubMed ID: 31323502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics of autotrophic denitrification process and the impact of sulphur/limestone ratio on the process performance.
    Kilic A; Sahinkaya E; Cinar O
    Environ Technol; 2014; 35(21-24):2796-804. PubMed ID: 25176483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DL-cysteine and L-cystine formation and their enhancement effects during sulfur autotrophic denitrification.
    Hao W; Liu P; Miao B; Jiang Y; Wang D; Yang X; Huang X; Liang P
    Sci Total Environ; 2019 Dec; 695():133823. PubMed ID: 31421333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Operation performance and microbial community of sulfur-based autotrophic denitrification sludge with different sulfur sources.
    Fu C; Li J; Lv X; Song W; Zhang X
    Environ Geochem Health; 2020 Mar; 42(3):1009-1020. PubMed ID: 31897870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of autotrophic sulfur-oxidizers to remove nitrate from bank filtrate in a permeable reactive barrier system.
    Moon HS; Ahn KH; Lee S; Nam K; Kim JY
    Environ Pollut; 2004 Jun; 129(3):499-507. PubMed ID: 15016470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for Co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage.
    Qian J; Liu R; Wei L; Lu H; Chen GH
    Water Res; 2015 Sep; 80():189-99. PubMed ID: 26001823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of microbial communities in different sulfur-based autotrophic denitrification reactors.
    Zhou W; Li Y; Liu X; He S; Huang JC
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):447-453. PubMed ID: 27744555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined bioelectrochemical and sulfur autotrophic denitrification for drinking water treatment.
    Wang H; Qu J
    Water Res; 2003 Sep; 37(15):3767-75. PubMed ID: 12867345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autotrophic denitrification by sulfur-based immobilized electron donor for enhanced nitrogen removal: Denitrification performance, microbial interspecific interaction and functional traits.
    Tong Y; Zhang Q; Li Z; Meng G; Liu B; Jiang Y; Li S
    Bioresour Technol; 2024 Jun; 401():130747. PubMed ID: 38677382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a newly isolated strain Pseudomonas sp. C27 for sulfide oxidation: Reaction kinetics and stoichiometry.
    Xu XJ; Chen C; Guo HL; Wang AJ; Ren NQ; Lee DJ
    Sci Rep; 2016 Feb; 6():21032. PubMed ID: 26864216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.