BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23914786)

  • 1. Nontoxic impact of PEG-coated gold nanospheres on functional pulmonary surfactant-secreting alveolar type II cells.
    Bouzas V; Haller T; Hobi N; Felder E; Pastoriza-Santos I; Pérez-Gil J
    Nanotoxicology; 2014 Dec; 8(8):813-23. PubMed ID: 23914786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxicity, intracellular localization and exocytosis of citrate capped and PEG functionalized gold nanoparticles in human hepatocyte and kidney cells.
    Tlotleng N; Vetten MA; Keter FK; Skepu A; Tshikhudo R; Gulumian M
    Cell Biol Toxicol; 2016 Aug; 32(4):305-21. PubMed ID: 27184667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles.
    Brandenberger C; Mühlfeld C; Ali Z; Lenz AG; Schmid O; Parak WJ; Gehr P; Rothen-Rutishauser B
    Small; 2010 Aug; 6(15):1669-78. PubMed ID: 20602428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiparametric Assessment of Gold Nanoparticle Cytotoxicity in Cancerous and Healthy Cells: The Role of Size, Shape, and Surface Chemistry.
    Bhamidipati M; Fabris L
    Bioconjug Chem; 2017 Feb; 28(2):449-460. PubMed ID: 27992181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of halothane on surfactant biosynthesis by rat alveolar type II cells in primary culture.
    Molliex S; Crestani B; Dureuil B; Bastin J; Rolland C; Aubier M; Desmonts JM
    Anesthesiology; 1994 Sep; 81(3):668-76. PubMed ID: 8092514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical imaging of intracellular reactive oxygen species for the assessment of the cytotoxicity of nanoparticles.
    Lee K; Lee H; Lee KW; Park TG
    Biomaterials; 2011 Apr; 32(10):2556-65. PubMed ID: 21247630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticles cellular toxicity and recovery: adipose Derived Stromal cells.
    Mironava T; Hadjiargyrou M; Simon M; Rafailovich MH
    Nanotoxicology; 2014 Mar; 8(2):189-201. PubMed ID: 23330784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Polymer Coating of Gold Nanoparticles on Oxidative Stress and DNA Damage.
    Sen GT; Ozkemahli G; Shahbazi R; Erkekoglu P; Ulubayram K; Kocer-Gumusel B
    Int J Toxicol; 2020; 39(4):328-340. PubMed ID: 32483993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticles do not induce myotube cytotoxicity but increase the susceptibility to cell death.
    Leite PE; Pereira MR; do Nascimento Santos CA; Campos AP; Esteves TM; Granjeiro JM
    Toxicol In Vitro; 2015 Aug; 29(5):819-27. PubMed ID: 25790728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear penetration of surface functionalized gold nanoparticles.
    Gu YJ; Cheng J; Lin CC; Lam YW; Cheng SH; Wong WT
    Toxicol Appl Pharmacol; 2009 Jun; 237(2):196-204. PubMed ID: 19328820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of ligand composition on the in vivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles.
    Liu X; Huang N; Wang H; Li H; Jin Q; Ji J
    Biomaterials; 2013 Nov; 34(33):8370-81. PubMed ID: 23932246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications.
    Correard F; Maximova K; Estève MA; Villard C; Roy M; Al-Kattan A; Sentis M; Gingras M; Kabashin AV; Braguer D
    Int J Nanomedicine; 2014; 9():5415-30. PubMed ID: 25473280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size.
    Oh E; Delehanty JB; Sapsford KE; Susumu K; Goswami R; Blanco-Canosa JB; Dawson PE; Granek J; Shoff M; Zhang Q; Goering PL; Huston A; Medintz IL
    ACS Nano; 2011 Aug; 5(8):6434-48. PubMed ID: 21774456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanosized aluminum altered immune function.
    Braydich-Stolle LK; Speshock JL; Castle A; Smith M; Murdock RC; Hussain SM
    ACS Nano; 2010 Jul; 4(7):3661-70. PubMed ID: 20593840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion-activated cation entry (FACE) via P2X₄ couples surfactant secretion and alveolar fluid transport.
    Thompson KE; Korbmacher JP; Hecht E; Hobi N; Wittekindt OH; Dietl P; Kranz C; Frick M
    FASEB J; 2013 Apr; 27(4):1772-83. PubMed ID: 23307836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain microvessel endothelial cells responses to gold nanoparticles: In vitro pro-inflammatory mediators and permeability.
    Trickler WJ; Lantz SM; Murdock RC; Schrand AM; Robinson BL; Newport GD; Schlager JJ; Oldenburg SJ; Paule MG; Slikker W; Hussain SM; Ali SF
    Nanotoxicology; 2011 Dec; 5(4):479-92. PubMed ID: 21175299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of Peptides for Enhanced Uptake of PEGylayed Gold Nanoparticles.
    Cruje C; Chithrani BD
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2125-31. PubMed ID: 26413630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the cellular impact of nanoshell-based biosensors using mouse alveolar macrophage cultures.
    Swarup VP; Huang Y; Murillo G; Saleiro D; Mehta RG; Bishnoi SW
    Metallomics; 2011 Nov; 3(11):1218-26. PubMed ID: 21858295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy.
    Zhang XD; Wu D; Shen X; Chen J; Sun YM; Liu PX; Liang XJ
    Biomaterials; 2012 Sep; 33(27):6408-19. PubMed ID: 22681980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells.
    Liu X; Huang N; Li H; Jin Q; Ji J
    Langmuir; 2013 Jul; 29(29):9138-48. PubMed ID: 23815604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.