These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2391537)

  • 41. Ultrastructural aspects of the coeruleo-spinal projection.
    Holstege JC; Bongers CM
    Prog Brain Res; 1991; 88():143-56. PubMed ID: 1687617
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enzyme translocation in the course of regeneration of central primary afferent terminals in the substantia gelatinosa of the adult rodent spinal cord.
    Knyihár-Csillik E; Kreutzberg GW; Csillik B
    J Neurosci Res; 1989 Jan; 22(1):74-82. PubMed ID: 2538640
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Light and electron microscopic localization of B-50 (GAP43) in the rat spinal cord during transganglionic degenerative atrophy and regeneration.
    Knyihár-Csillik E; Csillik B; Oestreicher AB
    J Neurosci Res; 1992 May; 32(1):93-109. PubMed ID: 1378504
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Representation of cutaneous afferents by fluoride-resistant acid phosphatase (FRAP)-active terminals in the rat substantia gelatinosa rolandi.
    Knyihár E; Csillik B
    Acta Neurol Scand; 1976 Mar; 53(3):217-25. PubMed ID: 1266568
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Short- and long-term transganglionic changes in the central terminations of transected vibrissal afferents in the rat.
    Bjelke K; Aldskogius H; Arvidsson J
    Exp Brain Res; 1996 Nov; 112(2):268-76. PubMed ID: 8951395
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultrastructural studies on peptides in the dorsal horn of the spinal cord--I. Co-existence of galanin with other peptides in primary afferents in normal rats.
    Zhang X; Nicholas AP; Hökfelt T
    Neuroscience; 1993 Nov; 57(2):365-84. PubMed ID: 7509467
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural changes of anterior horn neurons and their synaptic input caudal to a low thoracic spinal cord hemisection in the adult rat: a light and electron microscopic study.
    Nacimiento W; Sappok T; Brook GA; Tóth L; Schoen SW; Noth J; Kreutzberg GW
    Acta Neuropathol; 1995; 90(6):552-64. PubMed ID: 8615075
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selective C-fiber deafferentation of the spinal dorsal horn prevents lesion-induced transganglionic transport of choleragenoid to the substantia gelatinosa in the rat.
    Jancsó G; Sántha P; Szigeti C; Dux M
    Neurosci Lett; 2004 May; 361(1-3):204-7. PubMed ID: 15135929
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Morphology and synaptic connections of slowly adapting periodontal afferent terminals in the trigeminal subnuclei principalis and oralis of the cat.
    Bae YC; Nakagawa S; Yoshida A; Nagase Y; Takemura M; Shigenaga Y
    J Comp Neurol; 1994 Oct; 348(1):121-32. PubMed ID: 7814681
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synaptic arrangements formed by serotonin-immunoreactive axons in the substantia gelatinosa of the rat spinal cord.
    Maxwell DJ; Léránth C; Verhofstad AA
    Q J Exp Physiol; 1985 Jul; 70(3):377-88. PubMed ID: 4034918
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Early morphological changes of primary afferent neurons and their processes in newborn mice after treatment with capsaicin.
    Hiura A; Ishizuka H
    Exp Brain Res; 1994; 101(2):203-15. PubMed ID: 7843309
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord.
    Swett JE; Woolf CJ
    J Comp Neurol; 1985 Jan; 231(1):66-77. PubMed ID: 3968229
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synaptic plasticity in the substantia gelatinosa in a model of chronic neuropathic pain.
    Jaken RJ; Joosten EA; Knüwer M; Miller R; van der Meulen I; Marcus MA; Deumens R
    Neurosci Lett; 2010 Jan; 469(1):30-3. PubMed ID: 19925847
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neuronal uptake of [3H]GABA and [3H]glycine in laminae I-III (substantia gelatinosa Rolandi) of the rat spinal cord. An autoradiographic study.
    Ribeiro-Da-Silva A; Coimbra A
    Brain Res; 1980 Apr; 188(2):449-64. PubMed ID: 6154502
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrastructural analysis of dynorphin B-immunoreactive cells and terminals in the superficial dorsal horn of the deafferented spinal cord of the rat.
    Cho HJ; Basbaum AI
    J Comp Neurol; 1989 Mar; 281(2):193-205. PubMed ID: 2565349
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Primary afferent interactions: analysis of calcitonin gene-related peptide-immunoreactive terminals in contact with unlabeled and GABA-immunoreactive profiles in the monkey dorsal horn.
    Hayes ES; Carlton SM
    Neuroscience; 1992; 47(4):873-96. PubMed ID: 1579216
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Long ascending projections from substantia gelatinosa Rolandi and the subjacent dorsal horn in the rat.
    Giesler GJ; Cannon JT; Urca G; Liebeskind JC
    Science; 1978 Dec; 202(4371):984-6. PubMed ID: 715454
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fine afferent fibers from viscera do not terminate in the substantia gelatinosa of the thoracic spinal cord.
    Cervero F; Connell LA
    Brain Res; 1984 Mar; 294(2):370-4. PubMed ID: 6200187
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GABA-like immunoreactivity in type I glomeruli of rat substantia gelatinosa.
    Todd AJ; Lochhead V
    Brain Res; 1990 Apr; 514(1):171-4. PubMed ID: 2357525
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electron microscope immunohistochemical localization of substance P in the central nervous system of the rat.
    Pelletier G; Leclerc R; Dupont A
    J Histochem Cytochem; 1977 Dec; 25(12):1373-5. PubMed ID: 925343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.