BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 23915651)

  • 1. Fatigue fracture of human lumbar vertebrae.
    Brinckmann P; Johannleweling N; Hilweg D; Biggemann M
    Clin Biomech (Bristol, Avon); 1987 May; 2(2):94-6. PubMed ID: 23915651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue fracture of human lumbar vertebrae.
    Brinckmann P; Biggemann M; Hilweg D
    Clin Biomech (Bristol, Avon); 1988; 3 Suppl 1():i-S23. PubMed ID: 23905925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the compressive strength of human lumbar vertebrae.
    Brinckmann P; Biggemann M; Hilweg D
    Clin Biomech (Bristol, Avon); 1989; 4 Suppl 2():iii-27. PubMed ID: 23906213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Axial compressive strength of thoraco-lumbar vertebrae--an experimental biomechanical study].
    Konermann W; Stubbe F; Link T; Meier N
    Z Orthop Ihre Grenzgeb; 1999; 137(3):223-31. PubMed ID: 10441827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the compressive strength of human lumbar vertebrae.
    Brinckmann P; Biggemann M; Hilweg D
    Spine (Phila Pa 1976); 1989 Jun; 14(6):606-10. PubMed ID: 2749376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressive fatigue behavior of human vertebral trabecular bone.
    Rapillard L; Charlebois M; Zysset PK
    J Biomech; 2006; 39(11):2133-9. PubMed ID: 16051256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading.
    Hansson TH; Keller TS; Spengler DM
    J Orthop Res; 1987; 5(4):479-87. PubMed ID: 3681522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants of vertebral fracture risk.
    Melton LJ; Riggs BL; Keaveny TM; Achenbach SJ; Hoffmann PF; Camp JJ; Rouleau PA; Bouxsein ML; Amin S; Atkinson EJ; Robb RA; Khosla S
    J Bone Miner Res; 2007 Dec; 22(12):1885-92. PubMed ID: 17680721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of implant size and device keel on vertebral compression properties in lumbar total disc replacement.
    Auerbach JD; Ballester CM; Hammond F; Carine ET; Balderston RA; Elliott DM
    Spine J; 2010 Apr; 10(4):333-40. PubMed ID: 20362251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of the cortical endplates has little effect on ultimate load and damage distribution in QCT-based voxel models of human lumbar vertebrae under axial compression.
    Maquer G; Dall'Ara E; Zysset PK
    J Biomech; 2012 Jun; 45(9):1733-8. PubMed ID: 22503577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental correlation between T2* and ultimate compressive strength in lumbar porcine vertebrae.
    Brismar TB; Hindmarsh T; Ringertz H
    Acad Radiol; 1997 Jun; 4(6):426-30. PubMed ID: 9189200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro relationships between vertebral body density, size, and compressive strength the elderly thoracolumbar spine.
    Edmondston SJ; Singer KP; Day RE; Breidahl PD; Price RI
    Clin Biomech (Bristol, Avon); 1994 May; 9(3):180-6. PubMed ID: 23916179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk of lumbar spine injury from cyclic compressive loading.
    Schmidt AL; Paskoff G; Shender BS; Bass CR
    Spine (Phila Pa 1976); 2012 Dec; 37(26):E1614-21. PubMed ID: 23023594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the failure behaviour of vertebral trabecular architectures under uni-axial compression and wedge action loading conditions.
    McDonnell P; Harrison N; McHugh PE
    Med Eng Phys; 2010 Jul; 32(6):569-76. PubMed ID: 20233666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age- and gender-related differences in vertebral bone mass, density, and strength.
    Ebbesen EN; Thomsen JS; Beck-Nielsen H; Nepper-Rasmussen HJ; Mosekilde L
    J Bone Miner Res; 1999 Aug; 14(8):1394-403. PubMed ID: 10457272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of disc degeneration and bone mineral density on the structural properties of lumbar end plates.
    Hou Y; Yuan W
    Spine J; 2012 Mar; 12(3):249-56. PubMed ID: 22366078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Premature adjacent vertebral fracture after vertebroplasty: a biomechanical study.
    Fahim DK; Sun K; Tawackoli W; Mendel E; Rhines LD; Burton AW; Kim DH; Ehni BL; Liebschner MA
    Neurosurgery; 2011 Sep; 69(3):733-44. PubMed ID: 21499145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling.
    Borah B; Dufresne TE; Cockman MD; Gross GJ; Sod EW; Myers WR; Combs KS; Higgins RE; Pierce SA; Stevens ML
    J Bone Miner Res; 2000 Sep; 15(9):1786-97. PubMed ID: 10976998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load.
    Cody DD; Goldstein SA; Flynn MJ; Brown EB
    Spine (Phila Pa 1976); 1991 Feb; 16(2):146-54. PubMed ID: 2011769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue fracture morphology in human lumbar motion segments.
    Hansson T; Keller T; Jonson R
    J Spinal Disord; 1988; 1(1):33-8. PubMed ID: 2980061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.