BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23915804)

  • 1. Using image processing technology combined with decision tree algorithm in laryngeal video stroboscope automatic identification of common vocal fold diseases.
    Jeffrey Kuo CF; Wang PC; Chu YH; Wang HW; Lai CY
    Comput Methods Programs Biomed; 2013 Oct; 112(1):228-36. PubMed ID: 23915804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic recognizing of vocal fold disorders from glottis images.
    Huang CC; Leu YS; Kuo CF; Chu WL; Chu YH; Wu HC
    Proc Inst Mech Eng H; 2014 Sep; 228(9):952-61. PubMed ID: 25313026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic and quantitative measurement of laryngeal video stroboscopic images.
    Kuo CJ; Kuo J; Hsiao SW; Lee CL; Lee JC; Ke BH
    Proc Inst Mech Eng H; 2017 Jan; 231(1):48-57. PubMed ID: 28097934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of laryngeal video stroboscope with laser marking module for dynamic glottis measurement.
    Kuo CF; Wang HW; Hsiao SW; Peng KC; Chou YL; Lai CY; Hsu CT
    Comput Med Imaging Graph; 2014 Jan; 38(1):34-41. PubMed ID: 24238805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameter estimation of an asymmetric vocal-fold system from glottal area time series using chaos synchronization.
    Zhang Y; Tao C; Jiang JJ
    Chaos; 2006 Jun; 16(2):023118. PubMed ID: 16822021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibration parameter extraction from endoscopic image series of the vocal folds.
    Döllinger M; Hoppe U; Hettlich F; Lohscheller J; Schuberth S; Eysholdt U
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):773-81. PubMed ID: 12148815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of laryngeal disorders based on shape and vascular defects of vocal folds.
    Irem Turkmen H; Elif Karsligil M; Kocak I
    Comput Biol Med; 2015 Jul; 62():76-85. PubMed ID: 25912989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonovibrography: mapping high-speed movies of vocal fold vibrations into 2-D diagrams for visualizing and analyzing the underlying laryngeal dynamics.
    Lohscheller J; Eysholdt U; Toy H; Dollinger M
    IEEE Trans Med Imaging; 2008 Mar; 27(3):300-9. PubMed ID: 18334426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of functional voice disorders based on phonovibrograms.
    Voigt D; Döllinger M; Braunschweig T; Yang A; Eysholdt U; Lohscheller J
    Artif Intell Med; 2010 May; 49(1):51-9. PubMed ID: 20138486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonovibrogram visualization of entire vocal fold dynamics.
    Lohscheller J; Eysholdt U
    Laryngoscope; 2008 Apr; 118(4):753-8. PubMed ID: 18216742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic tracing of vocal-fold motion from high-speed digital images.
    Yan Y; Chen X; Bless D
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1394-400. PubMed ID: 16830943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic diagnosis of vocal fold paresis by employing phonovibrogram features and machine learning methods.
    Voigt D; Döllinger M; Yang A; Eysholdt U; Lohscheller J
    Comput Methods Programs Biomed; 2010 Sep; 99(3):275-88. PubMed ID: 20138386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vocal folds morphological pathologies detection using Gabor filtering and Principal Component Analysis.
    Mendez-Zorrilla A; Garcia-Zapirain B
    Technol Health Care; 2015; 23(5):591-604. PubMed ID: 26410120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using image processing technology and mathematical algorithm in the automatic selection of vocal cord opening and closing images from the larynx endoscopy video.
    Kuo CF; Chu YH; Wang PC; Lai CY; Chu WL; Leu YS; Wang HW
    Comput Methods Programs Biomed; 2013 Dec; 112(3):455-65. PubMed ID: 24070546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronous video laryngoscopy and sonography of the larynx in children.
    Klinge K; Guntinas-Lichius O; Axtmann K; Mueller AH
    Eur Arch Otorhinolaryngol; 2016 Feb; 273(2):439-45. PubMed ID: 26446622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracting physiologically relevant parameters of vocal folds from high-speed video image series.
    Tao C; Zhang Y; Jiang JJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):794-801. PubMed ID: 17518275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative video laryngoscopy to monitor recovery from recurrent laryngeal nerve injury in the rat.
    Mor N; Naggar I; Das O; Nakase K; Silverman JB; Sundaram K; Stewart M; Kollmar R
    Otolaryngol Head Neck Surg; 2014 May; 150(5):824-6. PubMed ID: 24486780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiparametric analysis of vocal fold vibrations in healthy and disordered voices in high-speed imaging.
    Inwald EC; Döllinger M; Schuster M; Eysholdt U; Bohr C
    J Voice; 2011 Sep; 25(5):576-90. PubMed ID: 20728308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new generation videokymography for routine clinical vocal fold examination.
    Qiu Q; Schutte HK
    Laryngoscope; 2006 Oct; 116(10):1824-8. PubMed ID: 17003719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vocal folds analysis using global energy tracking.
    Elidan G; Elidan J
    J Voice; 2012 Nov; 26(6):760-8. PubMed ID: 22243974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.