BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23916396)

  • 21. Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers.
    Boutry C; Blackledge TA
    J Exp Biol; 2010 Oct; 213(Pt 20):3505-14. PubMed ID: 20889831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spider silk: understanding the structure-function relationship of a natural fiber.
    Humenik M; Scheibel T; Smith A
    Prog Mol Biol Transl Sci; 2011; 103():131-85. PubMed ID: 21999996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recombinant spider silk genetically functionalized with affinity domains.
    Jansson R; Thatikonda N; Lindberg D; Rising A; Johansson J; Nygren PÅ; Hedhammar M
    Biomacromolecules; 2014 May; 15(5):1696-706. PubMed ID: 24678858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reproducibility of the tensile properties of spider (Argiope trifasciata) silk obtained by forced silking.
    Guinea GV; Elices M; Real JI; Gutiérrez S; Pérez-Rigueiro J
    J Exp Zool A Comp Exp Biol; 2005 Jan; 303(1):37-44. PubMed ID: 15612009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion.
    Pereira AM; Machado R; da Costa A; Ribeiro A; Collins T; Gomes AC; Leonor IB; Kaplan DL; Reis RL; Casal M
    Acta Biomater; 2017 Jan; 47():50-59. PubMed ID: 27713086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced Antibacterial Activity of Se Nanoparticles Upon Coating with Recombinant Spider Silk Protein eADF4(κ16).
    Huang T; Kumari S; Herold H; Bargel H; Aigner TB; Heath DE; O'Brien-Simpson NM; O'Connor AJ; Scheibel T
    Int J Nanomedicine; 2020; 15():4275-4288. PubMed ID: 32606677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoparticle self-assembly by a highly stable recombinant spider wrapping silk protein subunit.
    Xu L; Tremblay ML; Orrell KE; Leclerc J; Meng Q; Liu XQ; Rainey JK
    FEBS Lett; 2013 Oct; 587(19):3273-80. PubMed ID: 23994530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recombinant spider silk proteins for applications in biomaterials.
    Spiess K; Lammel A; Scheibel T
    Macromol Biosci; 2010 Sep; 10(9):998-1007. PubMed ID: 20602494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spider silk for xeno-free long-term self-renewal and differentiation of human pluripotent stem cells.
    Wu S; Johansson J; Damdimopoulou P; Shahsavani M; Falk A; Hovatta O; Rising A
    Biomaterials; 2014 Oct; 35(30):8496-502. PubMed ID: 25043502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stretching of supercontracted fibers: a link between spinning and the variability of spider silk.
    Guinea GV; Elices M; Pérez-Rigueiro J; Plaza GR
    J Exp Biol; 2005 Jan; 208(Pt 1):25-30. PubMed ID: 15601874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recombinant tetra-cell adhesion motifs supports adhesion, migration and proliferation of keratinocytes/fibroblasts, and promotes wound healing.
    Jung MY; Thapa N; Kim JE; Yang JD; Cho BC; Kim IS
    Exp Mol Med; 2007 Oct; 39(5):663-72. PubMed ID: 18059142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of steam sterilization on recombinant spider silk particles.
    Lucke M; Winter G; Engert J
    Int J Pharm; 2015 Mar; 481(1-2):125-31. PubMed ID: 25596418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The common house spider alters the material and mechanical properties of cobweb silk in response to different prey.
    Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Nov; 309(9):542-52. PubMed ID: 18651614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Processing conditions for the formation of spider silk microspheres.
    Lammel A; Schwab M; Slotta U; Winter G; Scheibel T
    ChemSusChem; 2008; 1(5):413-6. PubMed ID: 18702135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spider silk as guiding biomaterial for human model neurons.
    Roloff F; Strauß S; Vogt PM; Bicker G; Radtke C
    Biomed Res Int; 2014; 2014():906819. PubMed ID: 24949480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Test system for evaluating the influence of polymer properties on primary human keratinocytes and fibroblasts in mono- and coculture.
    Trescher K; Roch T; Cui J; Kratz K; Lendlein A; Jung F
    J Biotechnol; 2013 Jun; 166(1-2):58-64. PubMed ID: 23643480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silkworm Silk Matrices Coated with Functionalized Spider Silk Accelerate Healing of Diabetic Wounds.
    Chouhan D; Das P; Thatikonda N; Nandi SK; Hedhammar M; Mandal BB
    ACS Biomater Sci Eng; 2019 Jul; 5(7):3537-3548. PubMed ID: 33405736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures.
    Yeo IS; Oh JE; Jeong L; Lee TS; Lee SJ; Park WH; Min BM
    Biomacromolecules; 2008 Apr; 9(4):1106-16. PubMed ID: 18327908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature.
    Unger RE; Ghanaati S; Orth C; Sartoris A; Barbeck M; Halstenberg S; Motta A; Migliaresi C; Kirkpatrick CJ
    Biomaterials; 2010 Sep; 31(27):6959-67. PubMed ID: 20619788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers.
    Chen J; Altman GH; Karageorgiou V; Horan R; Collette A; Volloch V; Colabro T; Kaplan DL
    J Biomed Mater Res A; 2003 Nov; 67(2):559-70. PubMed ID: 14566798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.