BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23916601)

  • 1. Interaction of characteristic structural elements of persimmon tannin with Chinese cobra PLA2.
    Zhang Y; Zhong L; Zhou B; Chen JY; Li CM
    Toxicon; 2013 Nov; 74():34-43. PubMed ID: 23916601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Both non-covalent and covalent interactions were involved in the mechanism of detoxifying effects of persimmon tannin on Chinese cobra PLA
    Zhang Y; Zhu W; Deng XY; Peng JM; Li CM
    Fitoterapia; 2017 Jul; 120():41-51. PubMed ID: 28552595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Assessment of inner filter effect corrections in fluorimetry of the interaction between polyphenols and proteins].
    Zhang Y; Zhong L; Du J; Chen JY; Dong XQ; Li CM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jan; 34(1):116-21. PubMed ID: 24783545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a highly polymeric proanthocyanidin fraction from persimmon pulp with strong Chinese cobra PLA2 inhibition effects.
    Xu SF; Zou B; Yang J; Yao P; Li CM
    Fitoterapia; 2012 Jan; 83(1):153-60. PubMed ID: 22037569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The detoxifying effects of structural elements of persimmon tannin on Chinese cobra phospholipase A
    Zhang Y; Li CM
    J Food Drug Anal; 2017 Jul; 25(3):731-740. PubMed ID: 28911659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction of a polymeric persimmon proanthocyanidin fraction with Chinese cobra PLA2 and BSA.
    Li CM; Zhang Y; Yang J; Zou B; Dong XQ; Hagerman AE
    Toxicon; 2013 Jun; 67():71-9. PubMed ID: 23500065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation and purification of four phenolic compounds from persimmon by high-speed counter-current chromatography.
    Peng J; Li K; Zhu W; Deng X; Li C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jan; 1072():78-85. PubMed ID: 29136554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A-type ECG and EGCG dimers disturb the structure of 3T3-L1 cell membrane and strongly inhibit its differentiation by targeting peroxisome proliferator-activated receptor γ with miR-27 involved mechanism.
    Zhu W; Zou B; Nie R; Zhang Y; Li CM
    J Nutr Biochem; 2015 Nov; 26(11):1124-35. PubMed ID: 26145192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High molecular weight persimmon (Diospyros kaki L.) proanthocyanidin: a highly galloylated, A-linked tannin with an unusual flavonol terminal unit, myricetin.
    Li C; Leverence R; Trombley JD; Xu S; Yang J; Tian Y; Reed JD; Hagerman AE
    J Agric Food Chem; 2010 Aug; 58(16):9033-42. PubMed ID: 23654234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of A-type proanthocyanidin dimers from peanut skins and persimmon pulp and comparison of the antioxidant activity of A-type and B-type dimers.
    Dong XQ; Zou B; Zhang Y; Ge ZZ; Du J; Li CM
    Fitoterapia; 2013 Dec; 91():128-139. PubMed ID: 24001713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-Dependent Membrane-Perturbing Potency of Four Proanthocyanidin Dimers on 3T3-L1 Preadipocytes.
    Zhu W; Xiong L; Peng J; Deng X; Gao J; Li CM
    J Agric Food Chem; 2016 Sep; 64(37):7022-32. PubMed ID: 27588748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Position and orientation of gallated proanthocyanidins in lipid bilayer membranes: influence of polymerization degree and linkage type.
    Zhu W; Khalifa I; Peng J; Li C
    J Biomol Struct Dyn; 2018 Aug; 36(11):2862-2875. PubMed ID: 28844180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Analysis on Antioxidant Activity of Four Characteristic Structural Units from Persimmon Tannin.
    Wang Z; Liu Z; Wu C; Liu S; Wang D; Hu C; Chen T; Ran Z; Gan W; Li G
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trimeric and Tetrameric A-Type Procyanidins from Peanut Skins.
    Dudek MK; Gliński VB; Davey MH; Sliva D; Kaźmierski S; Gliński JA
    J Nat Prod; 2017 Feb; 80(2):415-426. PubMed ID: 28231711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A-type ECG and EGCG dimers inhibit 3T3-L1 differentiation by binding to cholesterol in lipid rafts.
    Zhu W; Deng X; Peng J; Zou B; Li C
    J Nutr Biochem; 2017 Oct; 48():62-73. PubMed ID: 28772148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Procyanidins from Myrothamnus flabellifolia.
    Anke J; Petereit F; Engelhardt C; Hensel A
    Nat Prod Res; 2008; 22(14):1237-48. PubMed ID: 18932087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proanthocyanidins and a phloroglucinol derivative from Rumex acetosa L.
    Bicker J; Petereit F; Hensel A
    Fitoterapia; 2009 Dec; 80(8):483-95. PubMed ID: 19695312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bile acid-binding ability of kaki-tannin from young fruits of persimmon (Diospyros kaki) in vitro and in vivo.
    Matsumoto K; Kadowaki A; Ozaki N; Takenaka M; Ono H; Yokoyama S; Gato N
    Phytother Res; 2011 Apr; 25(4):624-8. PubMed ID: 20922818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of changes in ER stress-mediated signaling pathway with lead-induced insulin resistance and apoptosis in rats and their prevention by A-type dimeric epigallocatechin-3-gallate.
    Liu CM; Ma JQ; Sun JM; Feng ZJ; Cheng C; Yang W; Jiang H
    Food Chem Toxicol; 2017 Dec; 110():325-332. PubMed ID: 29107025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory modulation of ATP-sensitive potassium channels by gallate-ester moiety of (-)-epigallocatechin-3-gallate.
    Baek WK; Jang BC; Lim JH; Kwon TK; Lee HY; Cho CH; Kim DK; Shin DH; Park JG; Lim JG; Bae JH; Bae JH; Yoo SK; Park WK; Song DK
    Biochem Pharmacol; 2005 Nov; 70(11):1560-7. PubMed ID: 16216226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.