These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23916734)

  • 1. Sleep allostasis in chronic sleep restriction: the role of the norepinephrine system.
    Kim Y; Chen L; McCarley RW; Strecker RE
    Brain Res; 2013 Sep; 1531():9-16. PubMed ID: 23916734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoupling of sleepiness from sleep time and intensity during chronic sleep restriction: evidence for a role of the adenosine system.
    Kim Y; Bolortuya Y; Chen L; Basheer R; McCarley RW; Strecker RE
    Sleep; 2012 Jun; 35(6):861-9. PubMed ID: 22654205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat.
    Stephenson R; Caron AM; Famina S
    Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeated sleep restriction in rats leads to homeostatic and allostatic responses during recovery sleep.
    Kim Y; Laposky AD; Bergmann BM; Turek FW
    Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10697-702. PubMed ID: 17548824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: possible role in initiating allostatic adaptation.
    Wallingford JK; Deurveilher S; Currie RW; Fawcett JP; Semba K
    Neuroscience; 2014 Sep; 277():174-83. PubMed ID: 25010399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-of-day modulation of homeostatic and allostatic sleep responses to chronic sleep restriction in rats.
    Deurveilher S; Rusak B; Semba K
    Am J Physiol Regul Integr Comp Physiol; 2012 Jun; 302(12):R1411-25. PubMed ID: 22492816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep active cortical neurons expressing neuronal nitric oxide synthase are active after both acute sleep deprivation and chronic sleep restriction.
    Zielinski MR; Kim Y; Karpova SA; Winston S; McCarley RW; Strecker RE; Gerashchenko D
    Neuroscience; 2013 Sep; 247():35-42. PubMed ID: 23685166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain.
    Kim Y; Elmenhorst D; Weisshaupt A; Wedekind F; Kroll T; McCarley RW; Strecker RE; Bauer A
    J Sleep Res; 2015 Oct; 24(5):549-558. PubMed ID: 25900125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression.
    Zielinski MR; Kim Y; Karpova SA; McCarley RW; Strecker RE; Gerashchenko D
    Neurosci Lett; 2014 Sep; 580():27-31. PubMed ID: 25093703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The role of norepinephrine in down-regulation of visceral sensitivity in rats deprived of rapid eye movement sleep].
    Ling T; Zuo K; Yang Y; Yang XJ; Qian W; Hou XH
    Zhonghua Nei Ke Za Zhi; 2008 Feb; 47(2):133-6. PubMed ID: 18683801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic sedative effects of noradrenergic alpha(1)- and beta-receptor blockade on forebrain electroencephalographic and behavioral indices.
    Berridge CW; España RA
    Neuroscience; 2000; 99(3):495-505. PubMed ID: 11029541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adrenergic signaling plays a critical role in the maintenance of waking and in the regulation of REM sleep.
    Ouyang M; Hellman K; Abel T; Thomas SA
    J Neurophysiol; 2004 Oct; 92(4):2071-82. PubMed ID: 15190089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Eye Movement Sleep Deprivation Associated Increase in Na-K ATPase Activity in the Rat Brain is Due to Noradrenaline Induced α1-Adrenoceptor Mediated Increased α-Subunit of the Enzyme.
    Amar M; Mallick BN
    Neurochem Res; 2015 Aug; 40(8):1747-57. PubMed ID: 26148532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noradrenaline acting on alpha1-adrenoceptor mediates REM sleep deprivation-induced increased membrane potential in rat brain synaptosomes.
    Das G; Mallick BN
    Neurochem Int; 2008; 52(4-5):734-40. PubMed ID: 17950953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of behavioral and electroencephalographic indices of waking following stimulation of noradrenergic beta-receptors within the medial septal region of the basal forebrain.
    Berridge CW; Foote SL
    J Neurosci; 1996 Nov; 16(21):6999-7009. PubMed ID: 8824336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypotensive effects of eugenosedin-A with serotonin, alpha- and beta-adrenoceptor antagonistic activities in spontaneously hypertensive and normotensive rats.
    Shen KP; Chiu CC; Chen SJ; Chen IJ; Wu BN
    Pharmacology; 2004 Jun; 71(2):91-101. PubMed ID: 15118348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significance of the zero sum principle for circadian, homeostatic and allostatic regulation of sleep-wake state in the rat.
    Stephenson R; Caron AM; Famina S
    Physiol Behav; 2016 Dec; 167():35-48. PubMed ID: 27594095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep homeostasis in the rat is preserved during chronic sleep restriction.
    Leemburg S; Vyazovskiy VV; Olcese U; Bassetti CL; Tononi G; Cirelli C
    Proc Natl Acad Sci U S A; 2010 Sep; 107(36):15939-44. PubMed ID: 20696898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous effects of rapid eye movement sleep deprivation on binding to alpha- and beta-adrenergic receptor subtypes in rat brain.
    Hipólide DC; Tufik S; Raymond R; Nobrega JN
    Neuroscience; 1998 Oct; 86(3):977-87. PubMed ID: 9692733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in respiratory behavior, brain neurochemistry and receptor density induced by pharmacologic suppression of sleep in the neonatal period.
    Thomas AJ; Erokwu BO; Yamamoto BK; Ernsberger P; Bishara O; Strohl KP
    Brain Res Dev Brain Res; 2000 Apr; 120(2):181-9. PubMed ID: 10775770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.