These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: studies with a new animal model. Paterson RF; Lifshitz DA; Lingeman JE; Evan AP; Connors BA; Fineberg NS; Williams JC; McAteer JA J Urol; 2002 Nov; 168(5):2211-5. PubMed ID: 12394761 [TBL] [Abstract][Full Text] [Related]
10. Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery. Evan AP; McAteer JA; Connors BA; Blomgren PM; Lingeman JE BJU Int; 2007 Sep; 100(3):624-7; discussion 627-8. PubMed ID: 17550415 [TBL] [Abstract][Full Text] [Related]
11. Does Stepwise Voltage Ramping Protect the Kidney from Injury During Extracorporeal Shockwave Lithotripsy? Results of a Prospective Randomized Trial. Skuginna V; Nguyen DP; Seiler R; Kiss B; Thalmann GN; Roth B Eur Urol; 2016 Feb; 69(2):267-73. PubMed ID: 26119561 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of Renal Stone Comminution and Injury by Burst Wave Lithotripsy in a Pig Model. Maxwell AD; Wang YN; Kreider W; Cunitz BW; Starr F; Lee D; Nazari Y; Williams JC; Bailey MR; Sorensen MD J Endourol; 2019 Oct; 33(10):787-792. PubMed ID: 31016998 [No Abstract] [Full Text] [Related]
13. Quantitation of shock wave lithotripsy-induced lesion in small and large pig kidneys. Blomgren PM; Connors BA; Lingeman JE; Willis LR; Evan AP Anat Rec; 1997 Nov; 249(3):341-8. PubMed ID: 9372167 [TBL] [Abstract][Full Text] [Related]
14. A prospective randomized trial comparing 2 lithotriptors for stone disintegration and induced renal trauma. Graber SF; Danuser H; Hochreiter WW; Studer UE J Urol; 2003 Jan; 169(1):54-7. PubMed ID: 12478101 [TBL] [Abstract][Full Text] [Related]
15. Assessment of renal injury with a clinical dual head lithotriptor delivering 240 shock waves per minute. Handa RK; McAteer JA; Evan AP; Connors BA; Pishchalnikov YA; Gao S J Urol; 2009 Feb; 181(2):884-9. PubMed ID: 19095269 [TBL] [Abstract][Full Text] [Related]
16. Development of a novel magnetic resonance imaging acquisition and analysis workflow for the quantification of shock wave lithotripsy-induced renal hemorrhagic injury. Handa RK; Territo PR; Blomgren PM; Persohn SA; Lin C; Johnson CD; Jiang L; Connors BA; Hutchins GD Urolithiasis; 2017 Oct; 45(5):507-513. PubMed ID: 28074231 [TBL] [Abstract][Full Text] [Related]
17. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. Zhou Y; Cocks FH; Preminger GM; Zhong P J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809 [TBL] [Abstract][Full Text] [Related]
18. Focused Ultrasonic Propulsion of Kidney Stones. Sorensen MD; Bailey MR; Hsi RS; Cunitz BW; Simon J; Wang YN; Dunmire BL; Paun M; Starr F; Lu W; Evan AP; Harper JD J Endourol B Videourol; 2013; 27(6):. PubMed ID: 32292639 [No Abstract] [Full Text] [Related]
19. Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. Evan AP; Willis LR; McAteer JA; Bailey MR; Connors BA; Shao Y; Lingeman JE; Williams JC; Fineberg NS; Crum LA J Urol; 2002 Oct; 168(4 Pt 1):1556-62. PubMed ID: 12352457 [TBL] [Abstract][Full Text] [Related]
20. Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. Handa RK; Bailey MR; Paun M; Gao S; Connors BA; Willis LR; Evan AP BJU Int; 2009 May; 103(9):1270-4. PubMed ID: 19154458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]