These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 23917170)
1. Potential of phytase-mediated iron release from cereal-based foods: a quantitative view. Nielsen AV; Tetens I; Meyer AS Nutrients; 2013 Aug; 5(8):3074-98. PubMed ID: 23917170 [TBL] [Abstract][Full Text] [Related]
2. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions. Nielsen AV; Meyer AS J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688 [TBL] [Abstract][Full Text] [Related]
3. Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Gibson RS; Raboy V; King JC Nutr Rev; 2018 Nov; 76(11):793-804. PubMed ID: 30010865 [TBL] [Abstract][Full Text] [Related]
4. Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods. Troesch B; Jing H; Laillou A; Fowler A Food Nutr Bull; 2013 Jun; 34(2 Suppl):S90-101. PubMed ID: 24050000 [TBL] [Abstract][Full Text] [Related]
5. The effect of food processing on phytate hydrolysis and availability of iron and zinc. Sandberg AS Adv Exp Med Biol; 1991; 289():499-508. PubMed ID: 1654732 [TBL] [Abstract][Full Text] [Related]
6. Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes? Elliott H; Woods P; Green BD; Nugent AP Nutr Bull; 2022 Jun; 47(2):138-156. PubMed ID: 36045098 [TBL] [Abstract][Full Text] [Related]
7. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Hurrell RF; Reddy MB; Juillerat MA; Cook JD Am J Clin Nutr; 2003 May; 77(5):1213-9. PubMed ID: 12716674 [TBL] [Abstract][Full Text] [Related]
8. Contribution of intestinal- and cereal-derived phytase activity on phytate degradation in young broilers. Morgan NK; Walk CL; Bedford MR; Burton EJ Poult Sci; 2015 Jul; 94(7):1577-83. PubMed ID: 25910902 [TBL] [Abstract][Full Text] [Related]
9. Effect of Phytase on in Vitro Hydrolysis of Phytate and the Formation of Hirvonen J; Liljavirta J; Saarinen MT; Lehtinen MJ; Ahonen I; Nurminen P J Agric Food Chem; 2019 Oct; 67(41):11396-11402. PubMed ID: 31537068 [TBL] [Abstract][Full Text] [Related]
10. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Gibson RS; Bailey KB; Gibbs M; Ferguson EL Food Nutr Bull; 2010 Jun; 31(2 Suppl):S134-46. PubMed ID: 20715598 [TBL] [Abstract][Full Text] [Related]
11. Structure of a cereal purple acid phytase provides new insights to phytate degradation in plants. Faba-Rodriguez R; Gu Y; Salmon M; Dionisio G; Brinch-Pedersen H; Brearley CA; Hemmings AM Plant Commun; 2022 Mar; 3(2):100305. PubMed ID: 35529950 [TBL] [Abstract][Full Text] [Related]
12. Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of Escherichia coli. Greiner R; Carlsson N; Alminger ML J Biotechnol; 2001 Nov; 84(1):53-62. PubMed ID: 11035187 [TBL] [Abstract][Full Text] [Related]
13. Use of Lactobacilli in Cereal-Legume Fermentation and as Potential Probiotics towards Phytate Hydrolysis. Amritha GK; Venkateswaran G Probiotics Antimicrob Proteins; 2018 Dec; 10(4):647-653. PubMed ID: 28936766 [TBL] [Abstract][Full Text] [Related]
14. Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread. García-Mantrana I; Yebra MJ; Haros M; Monedero V Int J Food Microbiol; 2016 Jan; 216():18-24. PubMed ID: 26384212 [TBL] [Abstract][Full Text] [Related]
15. Screening for anti-nutritional compounds in complementary foods and food aid products for infants and young children. Roos N; Sørensen JC; Sørensen H; Rasmussen SK; Briend A; Yang Z; Huffman SL Matern Child Nutr; 2013 Jan; 9 Suppl 1(Suppl 1):47-71. PubMed ID: 23167584 [TBL] [Abstract][Full Text] [Related]
16. Phytate: impact on environment and human nutrition. A challenge for molecular breeding. Bohn L; Meyer AS; Rasmussen SK J Zhejiang Univ Sci B; 2008 Mar; 9(3):165-91. PubMed ID: 18357620 [TBL] [Abstract][Full Text] [Related]
17. Degradation of phytate in the gut of pigs--pathway of gastro-intestinal inositol phosphate hydrolysis and enzymes involved. Schlemmer U; Jany KD; Berk A; Schulz E; Rechkemmer G Arch Tierernahr; 2001; 55(4):255-80. PubMed ID: 12357589 [TBL] [Abstract][Full Text] [Related]
18. Globoids and Phytase: The Mineral Storage and Release System in Seeds. Madsen CK; Brinch-Pedersen H Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33053867 [TBL] [Abstract][Full Text] [Related]
19. Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase. Bohn L; Josefsen L; Meyer AS; Rasmussen SK J Agric Food Chem; 2007 Sep; 55(18):7547-52. PubMed ID: 17696444 [TBL] [Abstract][Full Text] [Related]
20. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Wyss M; Brugger R; Kronenberger A; Rémy R; Fimbel R; Oesterhelt G; Lehmann M; van Loon AP Appl Environ Microbiol; 1999 Feb; 65(2):367-73. PubMed ID: 9925555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]