These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 23917412)
21. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells. Yu J; Hsu CH; Huang CC; Chang PY ACS Appl Mater Interfaces; 2015 Jan; 7(1):432-41. PubMed ID: 25494339 [TBL] [Abstract][Full Text] [Related]
22. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer. Eyvazzadeh N; Shakeri-Zadeh A; Fekrazad R; Amini E; Ghaznavi H; Kamran Kamrava S Lasers Med Sci; 2017 Sep; 32(7):1469-1477. PubMed ID: 28674789 [TBL] [Abstract][Full Text] [Related]
23. Monodispersed plasmonic Prussian blue nanoparticles for zero-background SERS/MRI-guided phototherapy. Zhu W; Gao MY; Zhu Q; Chi B; Zeng LW; Hu JM; Shen AG Nanoscale; 2020 Feb; 12(5):3292-3301. PubMed ID: 31971195 [TBL] [Abstract][Full Text] [Related]
24. A dual-targeting strategy for enhanced drug delivery and synergistic therapy based on thermosensitive nanoparticles. Wang M; You C; Gao Z; Wu H; Sun B; Zhu X; Chen R J Biomater Sci Polym Ed; 2018 Aug; 29(11):1360-1374. PubMed ID: 29611463 [TBL] [Abstract][Full Text] [Related]
25. meso-Tetrahydroxyphenylchlorin-Conjugated Gold Nanoparticles as a Tool To Improve Photodynamic Therapy. Haimov E; Weitman H; Polani S; Schori H; Zitoun D; Shefi O ACS Appl Mater Interfaces; 2018 Jan; 10(3):2319-2327. PubMed ID: 29298037 [TBL] [Abstract][Full Text] [Related]
26. Protein-Induced Gold Nanoparticle Assembly for Improving the Photothermal Effect in Cancer Therapy. Wang J; Zhang Y; Jin N; Mao C; Yang M ACS Appl Mater Interfaces; 2019 Mar; 11(12):11136-11143. PubMed ID: 30869510 [TBL] [Abstract][Full Text] [Related]
27. Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction. Su Y; Wei X; Peng F; Zhong Y; Lu Y; Su S; Xu T; Lee ST; He Y Nano Lett; 2012 Apr; 12(4):1845-50. PubMed ID: 22401822 [TBL] [Abstract][Full Text] [Related]
28. Redox/photo dual-responsive, self-targeted, and photosensitizer-laden bismuth sulfide nanourchins for combination therapy in cancer. Poudel K; Banstola A; Gautam M; Soe ZC; Pham LM; Jeong JH; Choi HG; Ku SK; Yong CS; Tran TH; Kim JO Nanoscale; 2021 Jan; 13(2):1231-1247. PubMed ID: 33406178 [TBL] [Abstract][Full Text] [Related]
29. Lipid-Wrapped Upconversion Nanoconstruct/Photosensitizer Complex for Near-Infrared Light-Mediated Photodynamic Therapy. Thanasekaran P; Chu CH; Wang SB; Chen KY; Gao HD; Lee MM; Sun SS; Li JP; Chen JY; Chen JK; Chang YH; Lee HM ACS Appl Mater Interfaces; 2019 Jan; 11(1):84-95. PubMed ID: 30500151 [TBL] [Abstract][Full Text] [Related]
30. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Idris NM; Gnanasammandhan MK; Zhang J; Ho PC; Mahendran R; Zhang Y Nat Med; 2012 Oct; 18(10):1580-5. PubMed ID: 22983397 [TBL] [Abstract][Full Text] [Related]
31. In vitro outlook of gold nanoparticles in photo-thermal therapy: a literature review. Norouzi H; Khoshgard K; Akbarzadeh F Lasers Med Sci; 2018 May; 33(4):917-926. PubMed ID: 29492712 [TBL] [Abstract][Full Text] [Related]
32. Dual-selective photodynamic therapy with a mitochondria-targeted photosensitizer and fiber optic cannula for malignant brain tumors. Kang JH; Ko YT Biomater Sci; 2019 Jul; 7(7):2812-2825. PubMed ID: 31066391 [TBL] [Abstract][Full Text] [Related]
34. Multifunctional Photosensitizer Grafted on Polyethylene Glycol and Polyethylenimine Dual-Functionalized Nanographene Oxide for Cancer-Targeted Near-Infrared Imaging and Synergistic Phototherapy. Luo S; Yang Z; Tan X; Wang Y; Zeng Y; Wang Y; Li C; Li R; Shi C ACS Appl Mater Interfaces; 2016 Jul; 8(27):17176-86. PubMed ID: 27320692 [TBL] [Abstract][Full Text] [Related]
35. Core-matched nanoassemblies for targeted co-delivery of chemotherapy and photosensitizer to treat drug-resistant cancer. Jiang D; Xu M; Pei Y; Huang Y; Chen Y; Ma F; Lu H; Chen J Acta Biomater; 2019 Apr; 88():406-421. PubMed ID: 30763634 [TBL] [Abstract][Full Text] [Related]
36. Modeling nanophotothermal therapy: kinetics of thermal ablation of healthy and cancerous cell organelles and gold nanoparticles. Letfullin RR; Iversen CB; George TF Nanomedicine; 2011 Apr; 7(2):137-45. PubMed ID: 20732456 [TBL] [Abstract][Full Text] [Related]
37. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Huang P; Li Z; Lin J; Yang D; Gao G; Xu C; Bao L; Zhang C; Wang K; Song H; Hu H; Cui D Biomaterials; 2011 May; 32(13):3447-58. PubMed ID: 21303717 [TBL] [Abstract][Full Text] [Related]
38. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics. Sun SK; Wang HF; Yan XP Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602 [TBL] [Abstract][Full Text] [Related]
39. Nanometric gold in cancer nanotechnology: current status and future prospect. Ahmad MZ; Akhter S; Rahman Z; Akhter S; Anwar M; Mallik N; Ahmad FJ J Pharm Pharmacol; 2013 May; 65(5):634-51. PubMed ID: 23600380 [TBL] [Abstract][Full Text] [Related]
40. Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy. Bhana S; Lin G; Wang L; Starring H; Mishra SR; Liu G; Huang X ACS Appl Mater Interfaces; 2015 Jun; 7(21):11637-47. PubMed ID: 25965727 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]