These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23917521)

  • 1. High yield formation of lipid bilayer shells around silicon nanowires in aqueous solution.
    Römhildt L; Gang A; Baraban L; Opitz J; Cuniberti G
    Nanotechnology; 2013 Sep; 24(35):355601. PubMed ID: 23917521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation, stability, and mobility of one-dimensional lipid bilayers on polysilicon nanowires.
    Huang SC; Artyukhin AB; Martinez JA; Sirbuly DJ; Wang Y; Ju JW; Stroeve P; Noy A
    Nano Lett; 2007 Nov; 7(11):3355-9. PubMed ID: 17900161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly formation of lipid bilayer coatings on bare aluminum oxide: overcoming the force of interfacial water.
    Jackman JA; Tabaei SR; Zhao Z; Yorulmaz S; Cho NJ
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):959-68. PubMed ID: 25513828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The collagen assisted self-assembly of silicon nanowires.
    Salhi B; Vaurette F; Grandidier B; Stiévenard D; Melnyk O; Coffinier Y; Boukherroub R
    Nanotechnology; 2009 Jun; 20(23):235601. PubMed ID: 19451677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent-assisted lipid bilayer formation on silicon dioxide and gold.
    Tabaei SR; Choi JH; Haw Zan G; Zhdanov VP; Cho NJ
    Langmuir; 2014 Sep; 30(34):10363-73. PubMed ID: 25111254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient biocompatible single silicon nanowire electrodes with functional biological pore channels.
    Martinez JA; Misra N; Wang Y; Stroeve P; Grigoropoulos CP; Noy A
    Nano Lett; 2009 Mar; 9(3):1121-6. PubMed ID: 19203205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional integration of membrane proteins with nanotube and nanowire transistor devices.
    Noy A; Artyukhin AB; Huang SC; Martinez JA; Misra N
    Methods Mol Biol; 2011; 751():533-52. PubMed ID: 21674353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface nanostructures for fluorescence probing of supported lipid bilayers on reflective substrates.
    Dabkowska AP; Piret G; Niman CS; Lard M; Linke H; Nylander T; Prinz CN
    Nanoscale; 2015 Nov; 7(43):18020-4. PubMed ID: 26482860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Percolating silicon nanowire networks with highly reproducible electrical properties.
    Serre P; Mongillo M; Periwal P; Baron T; Ternon C
    Nanotechnology; 2015 Jan; 26(1):015201. PubMed ID: 25483713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of superhydrophobic silicon oxide nanowire surfaces.
    Coffinier Y; Janel S; Addad A; Blossey R; Gengembre L; Payen E; Boukherroub R
    Langmuir; 2007 Feb; 23(4):1608-11. PubMed ID: 17279635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomolecule and nanoparticle transfer on patterned and heterogeneously wetted superhydrophobic silicon nanowire surfaces.
    Piret G; Coffinier Y; Roux C; Melnyk O; Boukherroub R
    Langmuir; 2008 Mar; 24(5):1670-2. PubMed ID: 18251564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructural transformation and formation of heterojunctions from Si nanowires.
    Wong TL; Cheng C; Li W; Fung KK; Wang N
    ACS Nano; 2010 Oct; 4(10):5559-64. PubMed ID: 20845917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ formation and characterization of poly(ethylene glycol)-supported lipid bilayers on gold surfaces.
    Munro JC; Frank CW
    Langmuir; 2004 Nov; 20(24):10567-75. PubMed ID: 15544386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creating fluid and air-stable solid supported lipid bilayers.
    Holden MA; Jung SY; Yang T; Castellana ET; Cremer PS
    J Am Chem Soc; 2004 Jun; 126(21):6512-3. PubMed ID: 15161253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces.
    Pfeiffer I; Petronis S; Köper I; Kasemo B; Zäch M
    J Phys Chem B; 2010 Apr; 114(13):4623-31. PubMed ID: 20232804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of supported bilayers on silica substrates.
    Anderson TH; Min Y; Weirich KL; Zeng H; Fygenson D; Israelachvili JN
    Langmuir; 2009 Jun; 25(12):6997-7005. PubMed ID: 19354208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalization of silicon nanowires with actomyosin motor protein for bioinspired nanomechanical applications.
    Byun KE; Heo K; Shim S; Choi HJ; Hong S
    Small; 2009 Dec; 5(23):2659-64. PubMed ID: 19771569
    [No Abstract]   [Full Text] [Related]  

  • 18. Spatiotemporal dynamics of solvent-assisted lipid bilayer formation.
    Kim MC; Gillissen JJ; Tabaei SR; Zhdanov VP; Cho NJ
    Phys Chem Chem Phys; 2015 Dec; 17(46):31145-51. PubMed ID: 26539669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a planar zwitterionic lipid bilayer on titanium oxide.
    Cho NJ; Frank CW
    Langmuir; 2010 Oct; 26(20):15706-10. PubMed ID: 20857902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon nanowire fabric as a lithium ion battery electrode material.
    Chockla AM; Harris JT; Akhavan VA; Bogart TD; Holmberg VC; Steinhagen C; Mullins CB; Stevenson KJ; Korgel BA
    J Am Chem Soc; 2011 Dec; 133(51):20914-21. PubMed ID: 22070459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.