These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23917622)

  • 1. Experimental Techniques for Bubble Dynamics Analysis in Microchannels: A Review.
    Mohammadi M; Sharp KV
    J Fluids Eng; 2013 Feb; 135(2):212021-2120210. PubMed ID: 23917622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.
    Kinoshita H; Kaneda S; Fujii T; Oshima M
    Lab Chip; 2007 Mar; 7(3):338-46. PubMed ID: 17330165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement.
    Shen F; Li Y; Liu Z; Li X
    Microfluid Nanofluidics; 2017 Apr; 21(4):. PubMed ID: 28890680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphase bubbly flow visualization using particle image velocimetry.
    Hassan YA
    Ann N Y Acad Sci; 2002 Oct; 972():223-8. PubMed ID: 12496021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and Numerical Investigations on the Flow Characteristics within Hydrodynamic Entrance Regions in Microchannels.
    Li H; Huang B; Wu M
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31083496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique.
    Yan D; Nguyen NT; Yang C; Huang X
    J Chem Phys; 2006 Jan; 124(2):021103. PubMed ID: 16422562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle tracking techniques for electrokinetic microchannel flows.
    Devasenathipathy S; Santiago JG; Takehara K
    Anal Chem; 2002 Aug; 74(15):3704-13. PubMed ID: 12175157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A translating stage system for µ-PIV measurements surrounding the tip of a migrating semi-infinite bubble.
    Smith BJ; Yamaguchi E; Gaver DP
    Meas Sci Technol; 2010 Jan; 21(1):. PubMed ID: 23049168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-induced deformation in a microchannel with a non-Newtonian fluid.
    Raj M K; Chakraborty J; DasGupta S; Chakraborty S
    Biomicrofluidics; 2018 May; 12(3):034116. PubMed ID: 30018695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eliminating background noise effect in micro-resolution particle image velocimetry.
    Tian JD; Qiu HH
    Appl Opt; 2002 Nov; 41(32):6849-57. PubMed ID: 12440539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillations During Flow Boiling in Single Microchannels.
    Sitar A; Lebar A; Crivellari M; Bagolini A; Golobič I
    Acta Chim Slov; 2018 Dec; 65(4):980-988. PubMed ID: 33562951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-cost fluorescence microscope with microfluidic device fabrication for optofluidic applications.
    Nagalingam N; Raghunathan A; Korede V; Overmars EFJ; Hung ST; Hartkamp R; Padding JT; Smith CS; Eral HB
    HardwareX; 2023 Jun; 14():e00415. PubMed ID: 37078005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the fluid dynamics of rapid processes within microfluidic devices using bright-field microscopy.
    Pirbodaghi T; Vigolo D; Akbari S; deMello A
    Lab Chip; 2015 May; 15(9):2140-4. PubMed ID: 25812165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bubble formation dynamics in various flow-focusing microdevices.
    Dietrich N; Poncin S; Midoux N; Li HZ
    Langmuir; 2008 Dec; 24(24):13904-11. PubMed ID: 19360952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Frame-Rate Contrast-enhanced US Particle Image Velocimetry in the Abdominal Aorta: First Human Results.
    Engelhard S; Voorneveld J; Vos HJ; Westenberg JJM; Gijsen FJH; Taimr P; Versluis M; de Jong N; Bosch JG; Reijnen MMPJ; Groot Jebbink E
    Radiology; 2018 Oct; 289(1):119-125. PubMed ID: 30015586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD.
    Roloff C; Stucht D; Beuing O; Berg P
    J Neurointerv Surg; 2019 Mar; 11(3):275-282. PubMed ID: 30061369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Assessment of Flow Fields Associated with Heart Valve Prostheses Using Particle Image Velocimetry (PIV): Recommendations for Best Practices.
    Raghav V; Sastry S; Saikrishnan N
    Cardiovasc Eng Technol; 2018 Sep; 9(3):273-287. PubMed ID: 29532332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Study of Flow Boiling Regimes Occurring in a Microfluidic T-Junction.
    Bao X; Yang F; Zhang X
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.