BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23917952)

  • 1. A contact line pinning based microfluidic platform for modelling physiological flows.
    Tung CK; Krupa O; Apaydin E; Liou JJ; Diaz-Santana A; Kim BJ; Wu M
    Lab Chip; 2013 Oct; 13(19):3876-85. PubMed ID: 23917952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interstitial flows promote amoeboid over mesenchymal motility of breast cancer cells revealed by a three dimensional microfluidic model.
    Huang YL; Tung CK; Zheng A; Kim BJ; Wu M
    Integr Biol (Camb); 2015 Nov; 7(11):1402-11. PubMed ID: 26235230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization.
    Buchanan CF; Voigt EE; Szot CS; Freeman JW; Vlachos PP; Rylander MN
    Tissue Eng Part C Methods; 2014 Jan; 20(1):64-75. PubMed ID: 23730946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations.
    Liu MC; Shih HC; Wu JG; Weng TW; Wu CY; Lu JC; Tung YC
    Lab Chip; 2013 May; 13(9):1743-53. PubMed ID: 23475014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment.
    Funamoto K; Zervantonakis IK; Liu Y; Ochs CJ; Kim C; Kamm RD
    Lab Chip; 2012 Nov; 12(22):4855-63. PubMed ID: 23023115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions.
    Chen MB; Srigunapalan S; Wheeler AR; Simmons CA
    Lab Chip; 2013 Jul; 13(13):2591-8. PubMed ID: 23525275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering microscale cellular niches for three-dimensional multicellular co-cultures.
    Huang CP; Lu J; Seon H; Lee AP; Flanagan LA; Kim HY; Putnam AJ; Jeon NL
    Lab Chip; 2009 Jun; 9(12):1740-8. PubMed ID: 19495458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices.
    Sung KE; Su G; Pehlke C; Trier SM; Eliceiri KW; Keely PJ; Friedl A; Beebe DJ
    Biomaterials; 2009 Sep; 30(27):4833-41. PubMed ID: 19540580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device.
    van der Meer AD; Orlova VV; ten Dijke P; van den Berg A; Mummery CL
    Lab Chip; 2013 Sep; 13(18):3562-8. PubMed ID: 23702711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic model of angiogenic sprouting.
    Song JW; Bazou D; Munn LL
    Methods Mol Biol; 2015; 1214():243-54. PubMed ID: 25468609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor spheroids under perfusion within a 3D microfluidic platform reveal critical roles of cell-cell adhesion in tumor invasion.
    Huang YL; Ma Y; Wu C; Shiau C; Segall JE; Wu M
    Sci Rep; 2020 Jun; 10(1):9648. PubMed ID: 32541776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microengineering 3D Collagen Hydrogels with Long-Range Fiber Alignment.
    Ahmed A; Joshi IM; Goulet MR; Vidas JA; Byerley AM; Mansouri M; Day SW; Abhyankar VV
    J Vis Exp; 2022 Sep; (187):. PubMed ID: 36156068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis.
    Lam RH; Sun Y; Chen W; Fu J
    Lab Chip; 2012 Apr; 12(10):1865-73. PubMed ID: 22437210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adhesion assays of endothelial cells on nanopatterned surfaces within a microfluidic channel.
    Hwang SY; Kwon KW; Jang KJ; Park MC; Lee JS; Suh KY
    Anal Chem; 2010 Apr; 82(7):3016-22. PubMed ID: 20218573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of a microfluidic cell culture platform embedded with nanoscale features.
    Yang Y; Kulangara K; Sia J; Wang L; Leong KW
    Lab Chip; 2011 May; 11(9):1638-46. PubMed ID: 21442110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of in vitro endothelial linings grown within microfluidic channels.
    Esch MB; Post DJ; Shuler ML; Stokol T
    Tissue Eng Part A; 2011 Dec; 17(23-24):2965-71. PubMed ID: 21895486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Visualization and SERS Monitoring of the Interaction between Tumor and Endothelial Cells Using 3D Microfluidic Networks.
    Qian Z; Fei J; Zong S; Yang K; Li L; Liu R; Wang Z; Cui Y
    ACS Sens; 2020 Jan; 5(1):208-216. PubMed ID: 31885254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic Patterning-Based 3D Microfluidic Cell Culture Assay.
    Han S; Kim J; Li R; Ma A; Kwan V; Luong K; Sohn LL
    Adv Healthc Mater; 2018 Jun; 7(12):e1800122. PubMed ID: 29700986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple flow profiles for two-phase flow in single microfluidic channels through site-selective channel coating.
    Logtenberg H; Lopez-Martinez MJ; Feringa BL; Browne WR; Verpoorte E
    Lab Chip; 2011 Jun; 11(12):2030-4. PubMed ID: 21409272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform.
    van Duinen V; Zhu D; Ramakers C; van Zonneveld AJ; Vulto P; Hankemeier T
    Angiogenesis; 2019 Feb; 22(1):157-165. PubMed ID: 30171498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.