These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 23917952)
1. A contact line pinning based microfluidic platform for modelling physiological flows. Tung CK; Krupa O; Apaydin E; Liou JJ; Diaz-Santana A; Kim BJ; Wu M Lab Chip; 2013 Oct; 13(19):3876-85. PubMed ID: 23917952 [TBL] [Abstract][Full Text] [Related]
2. Interstitial flows promote amoeboid over mesenchymal motility of breast cancer cells revealed by a three dimensional microfluidic model. Huang YL; Tung CK; Zheng A; Kim BJ; Wu M Integr Biol (Camb); 2015 Nov; 7(11):1402-11. PubMed ID: 26235230 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Buchanan CF; Voigt EE; Szot CS; Freeman JW; Vlachos PP; Rylander MN Tissue Eng Part C Methods; 2014 Jan; 20(1):64-75. PubMed ID: 23730946 [TBL] [Abstract][Full Text] [Related]
4. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. Liu MC; Shih HC; Wu JG; Weng TW; Wu CY; Lu JC; Tung YC Lab Chip; 2013 May; 13(9):1743-53. PubMed ID: 23475014 [TBL] [Abstract][Full Text] [Related]
5. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Funamoto K; Zervantonakis IK; Liu Y; Ochs CJ; Kim C; Kamm RD Lab Chip; 2012 Nov; 12(22):4855-63. PubMed ID: 23023115 [TBL] [Abstract][Full Text] [Related]
6. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions. Chen MB; Srigunapalan S; Wheeler AR; Simmons CA Lab Chip; 2013 Jul; 13(13):2591-8. PubMed ID: 23525275 [TBL] [Abstract][Full Text] [Related]
7. Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Huang CP; Lu J; Seon H; Lee AP; Flanagan LA; Kim HY; Putnam AJ; Jeon NL Lab Chip; 2009 Jun; 9(12):1740-8. PubMed ID: 19495458 [TBL] [Abstract][Full Text] [Related]
8. Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices. Sung KE; Su G; Pehlke C; Trier SM; Eliceiri KW; Keely PJ; Friedl A; Beebe DJ Biomaterials; 2009 Sep; 30(27):4833-41. PubMed ID: 19540580 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. van der Meer AD; Orlova VV; ten Dijke P; van den Berg A; Mummery CL Lab Chip; 2013 Sep; 13(18):3562-8. PubMed ID: 23702711 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic model of angiogenic sprouting. Song JW; Bazou D; Munn LL Methods Mol Biol; 2015; 1214():243-54. PubMed ID: 25468609 [TBL] [Abstract][Full Text] [Related]
11. Tumor spheroids under perfusion within a 3D microfluidic platform reveal critical roles of cell-cell adhesion in tumor invasion. Huang YL; Ma Y; Wu C; Shiau C; Segall JE; Wu M Sci Rep; 2020 Jun; 10(1):9648. PubMed ID: 32541776 [TBL] [Abstract][Full Text] [Related]
12. Microengineering 3D Collagen Hydrogels with Long-Range Fiber Alignment. Ahmed A; Joshi IM; Goulet MR; Vidas JA; Byerley AM; Mansouri M; Day SW; Abhyankar VV J Vis Exp; 2022 Sep; (187):. PubMed ID: 36156068 [TBL] [Abstract][Full Text] [Related]
13. Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis. Lam RH; Sun Y; Chen W; Fu J Lab Chip; 2012 Apr; 12(10):1865-73. PubMed ID: 22437210 [TBL] [Abstract][Full Text] [Related]
14. Adhesion assays of endothelial cells on nanopatterned surfaces within a microfluidic channel. Hwang SY; Kwon KW; Jang KJ; Park MC; Lee JS; Suh KY Anal Chem; 2010 Apr; 82(7):3016-22. PubMed ID: 20218573 [TBL] [Abstract][Full Text] [Related]
15. Engineering of a microfluidic cell culture platform embedded with nanoscale features. Yang Y; Kulangara K; Sia J; Wang L; Leong KW Lab Chip; 2011 May; 11(9):1638-46. PubMed ID: 21442110 [TBL] [Abstract][Full Text] [Related]
16. Characterization of in vitro endothelial linings grown within microfluidic channels. Esch MB; Post DJ; Shuler ML; Stokol T Tissue Eng Part A; 2011 Dec; 17(23-24):2965-71. PubMed ID: 21895486 [TBL] [Abstract][Full Text] [Related]
17. In Situ Visualization and SERS Monitoring of the Interaction between Tumor and Endothelial Cells Using 3D Microfluidic Networks. Qian Z; Fei J; Zong S; Yang K; Li L; Liu R; Wang Z; Cui Y ACS Sens; 2020 Jan; 5(1):208-216. PubMed ID: 31885254 [TBL] [Abstract][Full Text] [Related]
18. Hydrophobic Patterning-Based 3D Microfluidic Cell Culture Assay. Han S; Kim J; Li R; Ma A; Kwan V; Luong K; Sohn LL Adv Healthc Mater; 2018 Jun; 7(12):e1800122. PubMed ID: 29700986 [TBL] [Abstract][Full Text] [Related]
19. Multiple flow profiles for two-phase flow in single microfluidic channels through site-selective channel coating. Logtenberg H; Lopez-Martinez MJ; Feringa BL; Browne WR; Verpoorte E Lab Chip; 2011 Jun; 11(12):2030-4. PubMed ID: 21409272 [TBL] [Abstract][Full Text] [Related]
20. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform. van Duinen V; Zhu D; Ramakers C; van Zonneveld AJ; Vulto P; Hankemeier T Angiogenesis; 2019 Feb; 22(1):157-165. PubMed ID: 30171498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]