These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 23918205)

  • 1. An online EEG BCI based on covert visuospatial attention in absence of exogenous stimulation.
    Tonin L; Leeb R; Sobolewski A; Millán Jdel R
    J Neural Eng; 2013 Oct; 10(5):056007. PubMed ID: 23918205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast detection of covert visuospatial attention using hybrid N2pc and SSVEP features.
    Xu M; Wang Y; Nakanishi M; Wang YT; Qi H; Jung TP; Ming D
    J Neural Eng; 2016 Dec; 13(6):066003. PubMed ID: 27705952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exogenous and endogenous orienting of visuospatial attention in P300-guided brain computer interfaces: a pilot study on healthy participants.
    Marchetti M; Piccione F; Silvoni S; Priftis K
    Clin Neurophysiol; 2012 Apr; 123(4):774-9. PubMed ID: 21903462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-dependent approach for single trial classification of covert visuospatial attention.
    Tonin L; Leeb R; Del R Millán J
    J Neural Eng; 2012 Aug; 9(4):045011. PubMed ID: 22832204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covert visuospatial attention orienting in a brain-computer interface for amyotrophic lateral sclerosis patients.
    Marchetti M; Piccione F; Silvoni S; Gamberini L; Priftis K
    Neurorehabil Neural Repair; 2013 Jun; 27(5):430-8. PubMed ID: 23353184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time decoding of the direction of covert visuospatial attention.
    Andersson P; Ramsey NF; Raemaekers M; Viergever MA; Pluim JP
    J Neural Eng; 2012 Aug; 9(4):045004. PubMed ID: 22831959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of P300 latency jitter on event related potential-based brain-computer interface performance.
    Aricò P; Aloise F; Schettini F; Salinari S; Mattia D; Cincotti F
    J Neural Eng; 2014 Jun; 11(3):035008. PubMed ID: 24835331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
    Xu M; Qi H; Wan B; Yin T; Liu Z; Ming D
    J Neural Eng; 2013 Apr; 10(2):026001. PubMed ID: 23369924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Employing an active mental task to enhance the performance of auditory attention-based brain-computer interfaces.
    Xu H; Zhang D; Ouyang M; Hong B
    Clin Neurophysiol; 2013 Jan; 124(1):83-90. PubMed ID: 22854211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An independent brain-computer interface using covert non-spatial visual selective attention.
    Zhang D; Maye A; Gao X; Hong B; Engel AK; Gao S
    J Neural Eng; 2010 Feb; 7(1):16010. PubMed ID: 20083864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A gaze independent hybrid-BCI based on visual spatial attention.
    Egan JM; Loughnane GM; Fletcher H; Meade E; Lalor EC
    J Neural Eng; 2017 Aug; 14(4):046006. PubMed ID: 28513478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
    Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI.
    Pfurtscheller G; Solis-Escalante T; Ortner R; Linortner P; Müller-Putz GR
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):409-14. PubMed ID: 20144923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli.
    Hill NJ; Schölkopf B
    J Neural Eng; 2012 Apr; 9(2):026011. PubMed ID: 22333135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An online brain-computer interface using non-flashing visual evoked potentials.
    Liu T; Goldberg L; Gao S; Hong B
    J Neural Eng; 2010 Jun; 7(3):036003. PubMed ID: 20404396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye-gaze independent EEG-based brain-computer interfaces for communication.
    Riccio A; Mattia D; Simione L; Olivetti M; Cincotti F
    J Neural Eng; 2012 Aug; 9(4):045001. PubMed ID: 22831893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.