These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 23919535)

  • 61. Synthesis and characterization of self-assembled DNA nanostructures.
    Lin C; Ke Y; Chhabra R; Sharma J; Liu Y; Yan H
    Methods Mol Biol; 2011; 749():1-11. PubMed ID: 21674361
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Self-Assembly of Complex DNA Tessellations by Using Low-Symmetry Multi-arm DNA Tiles.
    Zhang F; Jiang S; Li W; Hunt A; Liu Y; Yan H
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8860-3. PubMed ID: 27276237
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Self-assembly of DNA parallel double-crossover motifs.
    Lee JY; Yang Q; Chang X; Jeziorek M; Perumal D; Olivera TR; Etchegaray JP; Zhang F
    Nanoscale; 2024 Jan; 16(4):1685-1691. PubMed ID: 38193377
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Self-Assembly of DNA Nanostructures in Different Cations.
    Rodriguez A; Gandavadi D; Mathivanan J; Song T; Madhanagopal BR; Talbot H; Sheng J; Wang X; Chandrasekaran AR
    Small; 2023 Sep; 19(39):e2300040. PubMed ID: 37264756
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Design, Assembly, and Function of DNA Origami Mechanisms.
    Beshay PE; Johson JA; Le JV; Castro CE
    Methods Mol Biol; 2023; 2639():21-49. PubMed ID: 37166709
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Vesicle Tubulation with Self-Assembling DNA Nanosprings.
    Grome MW; Zhang Z; Pincet F; Lin C
    Angew Chem Int Ed Engl; 2018 May; 57(19):5330-5334. PubMed ID: 29575478
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Self-assembly of three-dimensional DNA nanostructures and potential biological applications.
    Lo PK; Metera KL; Sleiman HF
    Curr Opin Chem Biol; 2010 Oct; 14(5):597-607. PubMed ID: 20869905
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A study on a special DNA nanotube assembled from two single-stranded tiles.
    Xu F; Wu T; Shi X; Pan L
    Nanotechnology; 2019 Mar; 30(11):115602. PubMed ID: 30566929
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Topography-controlled alignment of DNA origami nanotubes on nanopatterned surfaces.
    Teshome B; Facsko S; Keller A
    Nanoscale; 2014; 6(3):1790-6. PubMed ID: 24352681
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cation-dependent switching of DNA nanostructures.
    He Y; Tian Y; Chen Y; Ye T; Mao C
    Macromol Biosci; 2007 Aug; 7(8):1060-4. PubMed ID: 17665414
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Diverse Chiral Nanotubes Assembled from Identical DNA Strands.
    Xie C; Chen Z; Chen K; Hu Y; Xu F; Pan L
    Nano Lett; 2024 Jul; 24(28):8696-8701. PubMed ID: 38967319
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Building Large DNA Bundles via Controlled Hierarchical Assembly of DNA Tubes.
    Zhang Y; Yang D; Wang P; Ke Y
    ACS Nano; 2023 Jun; 17(11):10486-10495. PubMed ID: 37207344
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Preparation of chemically modified RNA origami nanostructures.
    Endo M; Takeuchi Y; Emura T; Hidaka K; Sugiyama H
    Chemistry; 2014 Nov; 20(47):15330-3. PubMed ID: 25313942
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM; Hariri AA; Sleiman HF; Cosa G
    Acc Chem Res; 2019 Nov; 52(11):3199-3210. PubMed ID: 31675207
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Reducing facet nucleation during algorithmic self-assembly.
    Chen HL; Schulman R; Goel A; Winfree E
    Nano Lett; 2007 Sep; 7(9):2913-9. PubMed ID: 17718529
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hierarchical assembly of plasmonic nanostructures using virus capsid scaffolds on DNA origami templates.
    Wang D; Capehart SL; Pal S; Liu M; Zhang L; Schuck PJ; Liu Y; Yan H; Francis MB; De Yoreo JJ
    ACS Nano; 2014 Aug; 8(8):7896-904. PubMed ID: 25020109
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami.
    Jiang Q; Liu Q; Shi Y; Wang ZG; Zhan P; Liu J; Liu C; Wang H; Shi X; Zhang L; Sun J; Ding B; Liu M
    Nano Lett; 2017 Nov; 17(11):7125-7130. PubMed ID: 28990389
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Assembly of Gold Nanorods into Chiral Plasmonic Metamolecules Using DNA Origami Templates.
    Huang Y; Nguyen MK; Kuzyk A
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30907870
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Localized DNA Hybridization Chain Reactions on DNA Origami.
    Bui H; Shah S; Mokhtar R; Song T; Garg S; Reif J
    ACS Nano; 2018 Feb; 12(2):1146-1155. PubMed ID: 29357217
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Minimalist Design of Wireframe DNA Nanotubes: Tunable Geometry, Size, Chirality, and Dynamics.
    Luo X; Saliba D; Yang T; Gentile S; Mori K; Islas P; Das T; Bagheri N; Porchetta A; Guarne A; Cosa G; Sleiman HF
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202309869. PubMed ID: 37610293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.