These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 23919564)
1. Structural and equilibrium effects of the surface passivant on the stability of Au nanorods. Merrill NA; Sethi M; Knecht MR ACS Appl Mater Interfaces; 2013 Aug; 5(16):7906-14. PubMed ID: 23919564 [TBL] [Abstract][Full Text] [Related]
2. The stabilization and targeting of surfactant-synthesized gold nanorods. Rostro-Kohanloo BC; Bickford LR; Payne CM; Day ES; Anderson LJ; Zhong M; Lee S; Mayer KM; Zal T; Adam L; Dinney CP; Drezek RA; West JL; Hafner JH Nanotechnology; 2009 Oct; 20(43):434005. PubMed ID: 19801751 [TBL] [Abstract][Full Text] [Related]
3. Dynamic Equilibrium in the Cetyltrimethylammonium Bromide-Au Nanoparticle Bilayer, and the Consequent Impact on the Formation of the Nanoparticle Protein Corona. Barbero F; Moriones OH; Bastús NG; Puntes V Bioconjug Chem; 2019 Nov; 30(11):2917-2930. PubMed ID: 31621309 [TBL] [Abstract][Full Text] [Related]
4. Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation. Alkilany AM; Nagaria PK; Wyatt MD; Murphy CJ Langmuir; 2010 Jun; 26(12):9328-33. PubMed ID: 20356032 [TBL] [Abstract][Full Text] [Related]
5. Removal of cetyltrimethylammonium bromide to enhance the biocompatibility of Au nanorods synthesized by a modified seed mediated growth process. Choi BS; Iqbal M; Lee T; Kim YH; Tae G J Nanosci Nanotechnol; 2008 Sep; 8(9):4670-4. PubMed ID: 19049082 [TBL] [Abstract][Full Text] [Related]
6. Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer. Alkilany AM; Frey RL; Ferry JL; Murphy CJ Langmuir; 2008 Sep; 24(18):10235-9. PubMed ID: 18700748 [TBL] [Abstract][Full Text] [Related]
7. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass. Ferhan AR; Guo L; Kim DH Langmuir; 2010 Jul; 26(14):12433-42. PubMed ID: 20557083 [TBL] [Abstract][Full Text] [Related]
8. CTAB promoted synthesis of Au nanorods--temperature effects and stability considerations. Becker R; Liedberg B; Käll PO J Colloid Interface Sci; 2010 Mar; 343(1):25-30. PubMed ID: 19954787 [TBL] [Abstract][Full Text] [Related]
9. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Smith DK; Korgel BA Langmuir; 2008 Feb; 24(3):644-9. PubMed ID: 18184021 [TBL] [Abstract][Full Text] [Related]
10. Iodide in CTAB prevents gold nanorod formation. Smith DK; Miller NR; Korgel BA Langmuir; 2009 Aug; 25(16):9518-24. PubMed ID: 19413325 [TBL] [Abstract][Full Text] [Related]
11. Residual CTAB Ligands as Mass Spectrometry Labels to Monitor Cellular Uptake of Au Nanorods. García I; Henriksen-Lacey M; Sánchez-Iglesias A; Grzelczak M; Penadés S; Liz-Marzán LM J Phys Chem Lett; 2015 Jun; 6(11):2003-8. PubMed ID: 26266492 [TBL] [Abstract][Full Text] [Related]
12. Polyvinyl alcohol as a biocompatible alternative for the passivation of gold nanorods. Kinnear C; Burnand D; Clift MJ; Kilbinger AF; Rothen-Rutishauser B; Petri-Fink A Angew Chem Int Ed Engl; 2014 Nov; 53(46):12613-7. PubMed ID: 25056839 [TBL] [Abstract][Full Text] [Related]
13. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays. Narayanan R; Lipert RJ; Porter MD Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676 [TBL] [Abstract][Full Text] [Related]
14. Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings. Zhu XM; Fang C; Jia H; Huang Y; Cheng CH; Ko CH; Chen Z; Wang J; Wang YX Nanoscale; 2014 Oct; 6(19):11462-72. PubMed ID: 25155843 [TBL] [Abstract][Full Text] [Related]
16. Iodide impurities in hexadecyltrimethylammonium bromide (CTAB) products: lot-lot variations and influence on gold nanorod synthesis. Rayavarapu RG; Ungureanu C; Krystek P; van Leeuwen TG; Manohar S Langmuir; 2010 Apr; 26(7):5050-5. PubMed ID: 20205463 [TBL] [Abstract][Full Text] [Related]
17. Au(III)-CTAB reduction by ascorbic acid: preparation and characterization of gold nanoparticles. Khan Z; Singh T; Hussain JI; Hashmi AA Colloids Surf B Biointerfaces; 2013 Apr; 104():11-7. PubMed ID: 23298582 [TBL] [Abstract][Full Text] [Related]
18. The facile removal of CTAB from the surface of gold nanorods. He J; Unser S; Bruzas I; Cary R; Shi Z; Mehra R; Aron K; Sagle L Colloids Surf B Biointerfaces; 2018 Mar; 163():140-145. PubMed ID: 29291499 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of less toxic gold nanorods by using dodecylethyldimethylammonium bromide as an alternative growth-directing surfactant. Allen JM; Xu J; Blahove M; Canonico-May SA; Santaloci TJ; Braselton ME; Stone JW J Colloid Interface Sci; 2017 Nov; 505():1172-1176. PubMed ID: 28715861 [TBL] [Abstract][Full Text] [Related]
20. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Qiu Y; Liu Y; Wang L; Xu L; Bai R; Ji Y; Wu X; Zhao Y; Li Y; Chen C Biomaterials; 2010 Oct; 31(30):7606-19. PubMed ID: 20656344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]