These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 23919927)

  • 1. Glycogen synthase kinase-3β haploinsufficiency lengthens the circadian locomotor activity period in mice.
    Lavoie J; Hébert M; Beaulieu JM
    Behav Brain Res; 2013 Sep; 253():262-5. PubMed ID: 23919927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of glycogen synthase kinase-3-beta activity leads to abnormalities in physiological measures in mice.
    Ahnaou A; Drinkenburg WH
    Behav Brain Res; 2011 Aug; 221(1):246-52. PubMed ID: 21392539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of lithium on the circadian rhythms of locomotor activity and glycogen synthase kinase-3 protein expression in the mouse suprachiasmatic nuclei.
    Iwahana E; Akiyama M; Miyakawa K; Uchida A; Kasahara J; Fukunaga K; Hamada T; Shibata S
    Eur J Neurosci; 2004 Apr; 19(8):2281-7. PubMed ID: 15090054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium and genetic inhibition of GSK3beta enhance the effect of methamphetamine on circadian rhythms in the mouse.
    Mohawk JA; Miranda-Anaya M; Tataroglu O; Menaker M
    Behav Pharmacol; 2009 Mar; 20(2):174-83. PubMed ID: 19339873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of circadian rhythmicity and suprachiasmatic action potential frequency in a mouse model with constitutive activation of glycogen synthase kinase 3.
    Paul JR; Johnson RL; Jope RS; Gamble KL
    Neuroscience; 2012 Dec; 226():1-9. PubMed ID: 22986169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycogen synthase kinase 3beta as a likely target for the action of lithium on circadian clocks.
    Padiath QS; Paranjpe D; Jain S; Sharma VK
    Chronobiol Int; 2004 Jan; 21(1):43-55. PubMed ID: 15129823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of lighting condition on circadian behavior in 5-HT1A receptor knockout mice.
    Smith VM; Jeffers RT; McAllister BB; Basu P; Dyck RH; Antle MC
    Physiol Behav; 2015 Feb; 139():136-44. PubMed ID: 25446224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental disruption of the serotonin system alters circadian rhythms.
    Paulus EV; Mintz EM
    Physiol Behav; 2012 Jan; 105(2):257-63. PubMed ID: 21907225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GSK3 activity regulates rhythms in hippocampal clock gene expression and synaptic plasticity.
    Besing RC; Rogers CO; Paul JR; Hablitz LM; Johnson RL; McMahon LL; Gamble KL
    Hippocampus; 2017 Aug; 27(8):890-898. PubMed ID: 28556462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium- and valproate-induced alterations in circadian locomotor behavior in Drosophila.
    Dokucu ME; Yu L; Taghert PH
    Neuropsychopharmacology; 2005 Dec; 30(12):2216-24. PubMed ID: 15956996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; Pévet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles.
    Yamanaka Y; Honma S; Honma K
    Genes Cells; 2008 May; 13(5):497-507. PubMed ID: 18429821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secretin receptor-deficient mice exhibit altered circadian rhythm in wheel-running activity.
    Sugiyama M; Nishijima I; Miyazaki S; Nakamura TJ
    Neurosci Lett; 2020 Mar; 722():134814. PubMed ID: 32027952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of IKKalpha mRNA in the suprachiasmatic nucleus and circadian rhythms of mice lacking IKKalpha.
    Hayashi N; Yasuo S; Ebihara S; Yoshimura T
    Brain Res; 2003 Dec; 993(1-2):217-21. PubMed ID: 14642849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic stress affects PERIOD2 expression through glycogen synthase kinase-3β phosphorylation in the central clock.
    Kinoshita C; Miyazaki K; Ishida N
    Neuroreport; 2012 Jan; 23(2):98-102. PubMed ID: 22158133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daily patterns of running wheel activity in male anophthalmic mice.
    Laemle LK; Ottenweller JE
    Physiol Behav; 1998 May; 64(2):165-71. PubMed ID: 9662081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protracted cocaine withdrawal produces circadian rhythmic alterations of phosphorylated GSK-3β in reward-related brain areas in rats.
    Wei YM; Li SX; Shi HS; Ding ZB; Luo YX; Xue YX; Lu L; Yu CX
    Behav Brain Res; 2011 Mar; 218(1):228-33. PubMed ID: 21130813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Daily exposure to a running wheel entrains circadian rhythms in mice in parallel with development of an increase in spontaneous movement prior to running-wheel access.
    Yamanaka Y; Honma S; Honma K
    Am J Physiol Regul Integr Comp Physiol; 2013 Dec; 305(11):R1367-75. PubMed ID: 24108869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constant light uncovers behavioral effects of a mutation in the schizophrenia risk gene Dtnbp1 in mice.
    Bhardwaj SK; Stojkovic K; Kiessling S; Srivastava LK; Cermakian N
    Behav Brain Res; 2015 May; 284():58-68. PubMed ID: 25677649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.