These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
628 related articles for article (PubMed ID: 23920014)
1. Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds. Cheng AL; Batool S; McCreary CR; Lauzon ML; Frayne R; Goyal M; Smith EE Stroke; 2013 Oct; 44(10):2782-6. PubMed ID: 23920014 [TBL] [Abstract][Full Text] [Related]
2. Improved cerebral microbleeds detection using their magnetic signature on T2*-phase-contrast: A comparison study in a clinical setting. Kaaouana T; Bertrand A; Ouamer F; Law-Ye B; Pyatigorskaya N; Bouyahia A; Thiery N; Dufouil C; Delmaire C; Dormont D; de Rochefort L; Chupin M Neuroimage Clin; 2017; 15():274-283. PubMed ID: 28560152 [TBL] [Abstract][Full Text] [Related]
3. Comparison of ESWAN, SWI-SPGR, and 2D T2*-weighted GRE sequence for depicting cerebral microbleeds. Guo LF; Wang G; Zhu XY; Liu C; Cui L Clin Neuroradiol; 2013 Jun; 23(2):121-7. PubMed ID: 23212660 [TBL] [Abstract][Full Text] [Related]
4. Cerebral Microbleeds Remain for Nine Years: A Prospective Study with Yearly Magnetic Resonance Imaging. Saito T; Kawamura Y; Sato N; Sugiyama E; Okada M; Takeuchi T; Akasaka K; Hasebe N J Stroke Cerebrovasc Dis; 2018 Feb; 27(2):315-320. PubMed ID: 28969880 [TBL] [Abstract][Full Text] [Related]
6. Segmented 3D Echo Planar Acquisition for Rapid Susceptibility-Weighted Imaging: Application to Microhemorrhage Detection in Traumatic Brain Injury. Wang WT; Li N; Papageorgiou I; Chan L; Pham DL; Butman JA J Magn Reson Imaging; 2022 Nov; 56(5):1529-1535. PubMed ID: 35852491 [TBL] [Abstract][Full Text] [Related]
7. Accuracy of SWI sequences compared to T2*-weighted gradient echo sequences in the detection of cerebral cavernous malformations in the familial form. Sparacia G; Speciale C; Banco A; Bencivinni F; Midiri M Neuroradiol J; 2016 Oct; 29(5):326-35. PubMed ID: 27549150 [TBL] [Abstract][Full Text] [Related]
8. The use of susceptibility-weighted imaging to detect cerebral microbleeds after lacunar infarction. Shao L; Wang M; Ge XH; Huang HD; Gao L; Qin JC Eur Rev Med Pharmacol Sci; 2017 Jul; 21(13):3105-3112. PubMed ID: 28742195 [TBL] [Abstract][Full Text] [Related]
9. [Brain microbleeds - definition, pathophysiology and the consequences]. Mazurek M; Papuć E; Rejdak K Wiad Lek; 2018; 71(2 pt 2):408-412. PubMed ID: 29786594 [TBL] [Abstract][Full Text] [Related]
10. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. Nandigam RN; Viswanathan A; Delgado P; Skehan ME; Smith EE; Rosand J; Greenberg SM; Dickerson BC AJNR Am J Neuroradiol; 2009 Feb; 30(2):338-43. PubMed ID: 19001544 [TBL] [Abstract][Full Text] [Related]
11. DeepSWI: Using Deep Learning to Enhance Susceptibility Contrast on T2*-Weighted MRI. Genc O; Morrison MA; Villanueva-Meyer JE; Burns B; Hess CP; Banerjee S; Lupo JM J Magn Reson Imaging; 2023 Oct; 58(4):1200-1210. PubMed ID: 36733222 [TBL] [Abstract][Full Text] [Related]
12. Determination of detection sensitivity for cerebral microbleeds using susceptibility-weighted imaging. Buch S; Cheng YN; Hu J; Liu S; Beaver J; Rajagovindan R; Haacke EM NMR Biomed; 2017 Apr; 30(4):. PubMed ID: 27206271 [TBL] [Abstract][Full Text] [Related]
13. Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. Wycliffe ND; Choe J; Holshouser B; Oyoyo UE; Haacke EM; Kido DK J Magn Reson Imaging; 2004 Sep; 20(3):372-7. PubMed ID: 15332242 [TBL] [Abstract][Full Text] [Related]
14. Cerebral microbleed detection and mapping: principles, methodological aspects and rationale in vascular dementia. Charidimou A; Jäger HR; Werring DJ Exp Gerontol; 2012 Nov; 47(11):843-52. PubMed ID: 22750456 [TBL] [Abstract][Full Text] [Related]
15. Infratentorial Cerebral Microbleeds in Patients with Cerebral Amyloid Angiopathy. Renard D; Tatu L; Thouvenot E J Stroke Cerebrovasc Dis; 2018 Sep; 27(9):2534-2537. PubMed ID: 29861129 [TBL] [Abstract][Full Text] [Related]
16. Evaluating the use of gradient echo imaging for the detection of cerebral microbleeds in acute stroke cases: A retrospective data analysis in a UK stroke unit. Walsh G; Meagher T; Malamateniou C Radiography (Lond); 2021 May; 27(2):561-567. PubMed ID: 33281036 [TBL] [Abstract][Full Text] [Related]
17. Quantitative assessment and correlation analysis of cerebral microbleed distribution and leukoaraiosis in stroke outpatients. Yang Q; Yang Y; Li C; Li J; Liu X; Wang A; Zhao J; Wang M; Zeng X; Fan D Neurol Res; 2015 May; 37(5):403-9. PubMed ID: 25875577 [TBL] [Abstract][Full Text] [Related]
18. Cerebral microbleeds: accelerated 3D T2*-weighted GRE MR imaging versus conventional 2D T2*-weighted GRE MR imaging for detection. Vernooij MW; Ikram MA; Wielopolski PA; Krestin GP; Breteler MM; van der Lugt A Radiology; 2008 Jul; 248(1):272-7. PubMed ID: 18490493 [TBL] [Abstract][Full Text] [Related]
19. Wave-CAIPI susceptibility-weighted imaging achieves diagnostic performance comparable to conventional susceptibility-weighted imaging in half the scan time. Chung MS; Lee EJ; Kim S; Kim SO; Byun JS Eur Radiol; 2020 Apr; 30(4):2182-2190. PubMed ID: 31953660 [TBL] [Abstract][Full Text] [Related]
20. Cerebral microbleeds in patients with mild cognitive impairment and small vessel disease: The Vascular Mild Cognitive Impairment (VMCI)-Tuscany study. Valenti R; Del Bene A; Poggesi A; Ginestroni A; Salvadori E; Pracucci G; Ciolli L; Marini S; Nannucci S; Pasi M; Pescini F; Diciotti S; Orlandi G; Cosottini M; Chiti A; Mascalchi M; Bonuccelli U; Inzitari D; Pantoni L; J Neurol Sci; 2016 Sep; 368():195-202. PubMed ID: 27538632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]