BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23920090)

  • 1. Fluorescence correlation spectroscopy analysis for accurate determination of proportion of doubly labeled DNA in fluorescent DNA pool for quantitative biochemical assays.
    Hou S; Sun L; Wieczorek SA; Kalwarczyk T; Kaminski TS; Holyst R
    Biosens Bioelectron; 2014 Jan; 51():8-15. PubMed ID: 23920090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide.
    Wu C; Zhou Y; Miao X; Ling L
    Analyst; 2011 May; 136(10):2106-10. PubMed ID: 21442091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative fluorescence method for continuous measurement of DNA hybridization kinetics using a fluorescent intercalator.
    Yguerabide J; Ceballos A
    Anal Biochem; 1995 Jul; 228(2):208-20. PubMed ID: 8572297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA length evaluation using cyanine dye and fluorescence correlation spectroscopy.
    Shimizu M; Sasaki S; Tsuruoka M
    Biomacromolecules; 2005; 6(5):2703-7. PubMed ID: 16153109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution.
    Cosa G; Focsaneanu KS; McLean JR; McNamee JP; Scaiano JC
    Photochem Photobiol; 2001 Jun; 73(6):585-99. PubMed ID: 11421063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of dimeric intercalating dyes with single-stranded DNA.
    Rye HS; Glazer AN
    Nucleic Acids Res; 1995 Apr; 23(7):1215-22. PubMed ID: 7739900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exonucleolytic degradation of high-density labeled DNA studied by fluorescence correlation spectroscopy.
    Ehrlich N; Anhalt K; Paulsen H; Brakmann S; Hübner CG
    Analyst; 2012 Mar; 137(5):1160-7. PubMed ID: 22268065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A graphene-based real-time fluorescent assay of deoxyribonuclease I activity and inhibition.
    Zhou Z; Zhu C; Ren J; Dong S
    Anal Chim Acta; 2012 Aug; 740():88-92. PubMed ID: 22840655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel fluorescent reagent for recognition of triplex DNA with high specificity and selectivity.
    Chen Z; Zhang H; Ma X; Lin Z; Zhang L; Chen G
    Analyst; 2015 Nov; 140(22):7742-7. PubMed ID: 26456316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(II) ions in aqueous solution.
    Wang H; Wang Y; Jin J; Yang R
    Anal Chem; 2008 Dec; 80(23):9021-8. PubMed ID: 19551976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning backbones and side-chains of cationic conjugated polymers for optical signal amplification of fluorescent DNA detection.
    Huang YQ; Liu XF; Fan QL; Wang L; Song S; Wang LH; Fan C; Huang W
    Biosens Bioelectron; 2009 Jun; 24(10):2973-8. PubMed ID: 19342217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free and real-time sequence specific DNA detection based on supramolecular self-assembly.
    Tang Y; Achyuthan KE; Whitten DG
    Langmuir; 2010 May; 26(9):6832-7. PubMed ID: 20030336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform.
    Li H; Zhang Y; Wang L; Tian J; Sun X
    Chem Commun (Camb); 2011 Jan; 47(3):961-3. PubMed ID: 21079843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: an effective strategy to greatly improve discrimination ability toward single-base mismatch.
    Li H; Luo Y; Sun X
    Biosens Bioelectron; 2011 Sep; 27(1):167-71. PubMed ID: 21783356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxazine dye-conjugated dna oligonucleotides: Förster resonance energy transfer in view of molecular dye-DNA interactions.
    Kupstat A; Ritschel T; Kumke MU
    Bioconjug Chem; 2011 Dec; 22(12):2546-57. PubMed ID: 22073970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of DNA ligase reaction and gold nanoparticle-quenched fluorescent oligonucleotides: a simple and efficient approach for fluorescent assaying of single-nucleotide polymorphisms.
    Wang H; Li J; Wang Y; Jin J; Yang R; Wang K; Tan W
    Anal Chem; 2010 Sep; 82(18):7684-90. PubMed ID: 20726510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the formation and stability of triplex DNA using fluorescence correlation spectroscopy.
    Hu H; Huang X; Ren J
    Luminescence; 2016 May; 31(3):830-6. PubMed ID: 26377428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells.
    Bulseco DA; Wolf DE
    Methods Cell Biol; 2013; 114():489-524. PubMed ID: 23931520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination polymer nanobelts as an effective sensing platform for fluorescence-enhanced nucleic acid detection.
    Li H; Wang L; Zhai J; Zhang Y; Tian J; Sun X
    Macromol Rapid Commun; 2011 Jun; 32(12):899-904. PubMed ID: 21491538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Hg(2+)-mediated label-free fluorescent sensing strategy based on G-quadruplex formation for selective detection of glutathione and cysteine.
    Zhao J; Chen C; Zhang L; Jiang J; Shen G; Yu R
    Analyst; 2013 Mar; 138(6):1713-8. PubMed ID: 23377184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.