BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23920090)

  • 41. Modulating fluorescence anisotropy of terminally labeled double-stranded DNA via the interaction between dye and nucleotides for rational design of DNA recognition based applications.
    Huang H; Wei H; Zou M; Xu X; Xia B; Liu F; Li N
    Anal Chem; 2015 Mar; 87(5):2748-54. PubMed ID: 25671552
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Label-free dsDNA-Cu NPs-based fluorescent probe for highly sensitive detection of L-histidine.
    Liu YR; Hu R; Liu T; Zhang XB; Tan W; Shen GL; Yu RQ
    Talanta; 2013 Mar; 107():402-7. PubMed ID: 23598241
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution.
    Schwille P; Meyer-Almes FJ; Rigler R
    Biophys J; 1997 Apr; 72(4):1878-86. PubMed ID: 9083691
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative assay of total dsDNA with PicoGreen reagent and real-time fluorescent detection.
    Blotta I; Prestinaci F; Mirante S; Cantafora A
    Ann Ist Super Sanita; 2005; 41(1):119-23. PubMed ID: 16037660
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A fluorescence aptasensor based on DNA charge transport for sensitive protein detection in serum.
    Zhang X; Zhao Z; Mei H; Qiao Y; Liu Q; Luo W; Xia T; Fang X
    Analyst; 2011 Nov; 136(22):4764-9. PubMed ID: 21949940
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inverse-fluorescence cross-correlation spectroscopy.
    Wennmalm S; Widengren J
    Anal Chem; 2010 Jul; 82(13):5646-51. PubMed ID: 20527736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The isothermal amplification detection of double-stranded DNA based on a double-stranded fluorescence probe.
    Shi C; Shang F; Pan M; Liu S; Ma C
    Biosens Bioelectron; 2016 Jun; 80():54-58. PubMed ID: 26803414
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluorescence correlation spectroscopy in living cells.
    Kim SA; Heinze KG; Schwille P
    Nat Methods; 2007 Nov; 4(11):963-73. PubMed ID: 17971781
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accessing molecular dynamics in cells by fluorescence correlation spectroscopy.
    Dittrich P; Malvezzi-Campeggi F; Jahnz M; Schwille P
    Biol Chem; 2001 Mar; 382(3):491-4. PubMed ID: 11347899
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A fluorescence turn-on method for real-time monitoring of protease activity based on the electron transfer between a fluorophore labeled oligonucleotide and cytochrome c.
    Liao D; Li Y; Chen J; Yu C
    Anal Chim Acta; 2013 Jun; 784():72-6. PubMed ID: 23746411
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis.
    Schwille P; Oehlenschläger F; Walter NG
    Biochemistry; 1996 Aug; 35(31):10182-93. PubMed ID: 8756483
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Label free electrochemical DNA hybridization discrimination effects at the binary and ternary mixed monolayers of single stranded DNA/diluent/s in presence of cationic intercalators.
    Dharuman V; Hahn JH
    Biosens Bioelectron; 2008 Mar; 23(8):1250-8. PubMed ID: 18187315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of 3,4,9,10-perylenetetracarboxylic diimide microfibers as a fluorescent sensing platform for biomolecular detection.
    Li H; Sun X
    Anal Chim Acta; 2011 Sep; 702(1):109-13. PubMed ID: 21819867
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A WS2 nanosheet based sensing platform for highly sensitive detection of T4 polynucleotide kinase and its inhibitors.
    Ge J; Tang LJ; Xi Q; Li XP; Yu RQ; Jiang JH; Chu X
    Nanoscale; 2014 Jun; 6(12):6866-72. PubMed ID: 24830570
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conformational change detection of DNA with the fluorogenic reagent of o-phthalaldehyde-beta-mercaptoethanol.
    Long YF; Liao QG; Huang CZ; Ling J; Li YF
    J Phys Chem B; 2008 Feb; 112(6):1783-8. PubMed ID: 18215031
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label-free aptamer sensor.
    Zhou Z; Du Y; Dong S
    Anal Chem; 2011 Jul; 83(13):5122-7. PubMed ID: 21612269
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions.
    Yang R; Tang Z; Yan J; Kang H; Kim Y; Zhu Z; Tan W
    Anal Chem; 2008 Oct; 80(19):7408-13. PubMed ID: 18771233
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorescence correlation spectroscopy: novel variations of an established technique.
    Haustein E; Schwille P
    Annu Rev Biophys Biomol Struct; 2007; 36():151-69. PubMed ID: 17477838
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrochemical measurement of DNA hybridization using nanosilver as label and horseradish peroxidase as enhancer.
    Fu XH
    Bioprocess Biosyst Eng; 2008 Feb; 31(2):69-73. PubMed ID: 17671798
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using a competitive binding assay.
    Pänke O; Kirbs A; Lisdat F
    Biosens Bioelectron; 2007 May; 22(11):2656-62. PubMed ID: 17141493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.