These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23920171)

  • 1. The mechanism of {113} defect formation in silicon: clustering of interstitial-vacancy pairs studied by in situ high-resolution electron microscope irradiation.
    Fedina LI; Song SA; Chuvilin AL; Gutakovskii AK; Latyshev AV
    Microsc Microanal; 2013 Aug; 19 Suppl 5():38-42. PubMed ID: 23920171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure analysis of defects in nanometer space inside a crystal: creation and agglomeration of point defects in Si and Ge revealed by high-resolution electron microscopy.
    Takeda S
    Microsc Res Tech; 1998 Feb; 40(4):313-35. PubMed ID: 9523763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ observation of thermal relaxation of interstitial-vacancy pair defects in a graphite gap.
    Urita K; Suenaga K; Sugai T; Shinohara H; Iijima S
    Phys Rev Lett; 2005 Apr; 94(15):155502. PubMed ID: 15904158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Point-defect dynamics in two-dimensional colloidal crystals.
    Libál A; Reichhardt C; Reichhardt CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011403. PubMed ID: 17358146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between intrinsic point defects and low-angle grain boundary in bcc tungsten: effects of local stress field.
    Niu LL; Zhang Y; Shu X; Jin S; Zhou HB; Gao F; Lu GH
    J Phys Condens Matter; 2015 Jul; 27(25):255007. PubMed ID: 26045469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metastable Frenkel pair defect in graphite: source of Wigner energy?
    Ewels CP; Telling RH; El-Barbary AA; Heggie MI; Briddon PR
    Phys Rev Lett; 2003 Jul; 91(2):025505. PubMed ID: 12906489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of Irradiation-Induced Vacancy Defects in Boron Nitride Nanotubes.
    Cheng G; Yao S; Sang X; Hao B; Zhang D; Yap YK; Zhu Y
    Small; 2016 Feb; 12(6):818-24. PubMed ID: 26682873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain effects on oxygen transport in tetragonal zirconium dioxide.
    Bai XM; Zhang Y; Tonks MR
    Phys Chem Chem Phys; 2013 Nov; 15(44):19438-49. PubMed ID: 24127018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-range migration of intrinsic defects during irradiation or implantation.
    Steeds JW; Sullivan W; Wotherspoon A; Hayes JM
    J Phys Condens Matter; 2009 Sep; 21(36):364219. PubMed ID: 21832325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ab initio study of structural properties and single vacancy defects in Wurtzite AlN.
    Hung A; Russo SP; McCulloch DG; Prawer S
    J Chem Phys; 2004 Mar; 120(10):4890-6. PubMed ID: 15267350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical investigation of thermodynamic stability and mobility of the intrinsic point defects in Ti3AC2 (A = Si, Al).
    Wang J; Liu B; Wang J; Zhou Y
    Phys Chem Chem Phys; 2015 Apr; 17(14):8927-34. PubMed ID: 25749398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic diffusion of point defects in a two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy.
    Yamamoto D; Uchihashi T; Kodera N; Ando T
    Nanotechnology; 2008 Sep; 19(38):384009. PubMed ID: 21832568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect-induced homogeneous amorphization of silicon: the role of defect structure and population.
    Lulli G; Albertazzi E; Balboni S; Colombo L
    J Phys Condens Matter; 2006 Feb; 18(6):2077-88. PubMed ID: 21697576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ atomic-scale observation of irradiation-induced void formation.
    Xu W; Zhang Y; Cheng G; Jian W; Millett PC; Koch CC; Mathaudhu SN; Zhu Y
    Nat Commun; 2013; 4():2288. PubMed ID: 23912894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect properties of a body-centered cubic equiatomic TiVZrTa high-entropy alloy from atomistic simulations.
    Li Y; Qiang W
    J Phys Condens Matter; 2023 May; 35(34):. PubMed ID: 37226692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fourfold coordinated point defect in silicon.
    Goedecker S; Deutsch T; Billard L
    Phys Rev Lett; 2002 Jun; 88(23):235501. PubMed ID: 12059373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative TEM of point defects in Si.
    Eaglesham DJ; Venezia VC; Gossmann HJ; Agarwal A
    J Electron Microsc (Tokyo); 2000; 49(2):293-8. PubMed ID: 11108052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic Configuration of Point Defect Clusters in Ion-Irradiated Silicon Carbide.
    Lin YR; Chen LG; Hsieh CY; Chang MT; Fung KY; Hu A; Lo SC; Chen FR; Kai JJ
    Sci Rep; 2017 Nov; 7(1):14635. PubMed ID: 29116130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling equilibrium concentrations of Bjerrum and molecular point defects and their complexes in ice Ih.
    de Koning M; Antonelli A
    J Chem Phys; 2008 Apr; 128(16):164502. PubMed ID: 18447454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interstitial clustering in metallic systems as a source for the formation of the icosahedral matrix and defects in the glassy state.
    Konchakov RA; Makarov AS; Kobelev NP; Glezer AM; Wilde G; Khonik VA
    J Phys Condens Matter; 2019 Sep; 31(38):385703. PubMed ID: 31195372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.