BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23920326)

  • 1. MyD88-dependent signaling prolongs survival and reduces bacterial burden during pulmonary infection with virulent Francisella tularensis.
    Russo BC; Brown MJ; Nau GJ
    Am J Pathol; 2013 Oct; 183(4):1223-1232. PubMed ID: 23920326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hematopoietic MyD88 and IL-18 are essential for IFN-γ-dependent restriction of type A
    Skyberg JA; Lacey CA
    J Leukoc Biol; 2017 Dec; 102(6):1441-1450. PubMed ID: 28951422
    [No Abstract]   [Full Text] [Related]  

  • 3. TLR-dependent control of Francisella tularensis infection and host inflammatory responses.
    Abplanalp AL; Morris IR; Parida BK; Teale JM; Berton MT
    PLoS One; 2009 Nov; 4(11):e7920. PubMed ID: 19936231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kdo hydrolase is required for Francisella tularensis virulence and evasion of TLR2-mediated innate immunity.
    Okan NA; Chalabaev S; Kim TH; Fink A; Ross RA; Kasper DL
    mBio; 2013 Feb; 4(1):e00638-12. PubMed ID: 23404403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virulence difference between the prototypic Schu S4 strain (A1a) and Francisella tularensis A1a, A1b, A2 and type B strains in a murine model of infection.
    Molins CR; Delorey MJ; Yockey BM; Young JW; Belisle JT; Schriefer ME; Petersen JM
    BMC Infect Dis; 2014 Feb; 14():67. PubMed ID: 24502661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Features of sepsis caused by pulmonary infection with Francisella tularensis Type A strain.
    Sharma J; Mares CA; Li Q; Morris EG; Teale JM
    Microb Pathog; 2011; 51(1-2):39-47. PubMed ID: 21440052
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Benziger PT; Kopping EJ; McLaughlin PA; Thanassi DG
    mBio; 2023 Aug; 14(4):e0113623. PubMed ID: 37404047
    [No Abstract]   [Full Text] [Related]  

  • 8. Myeloid differentiation factor-88 (MyD88) is essential for control of primary in vivo Francisella tularensis LVS infection, but not for control of intra-macrophage bacterial replication.
    Collazo CM; Sher A; Meierovics AI; Elkins KL
    Microbes Infect; 2006 Mar; 8(3):779-90. PubMed ID: 16513388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of citrulline ureidase to Francisella tularensis strain Schu S4 pathogenesis.
    Mahawar M; Kirimanjeswara GS; Metzger DW; Bakshi CS
    J Bacteriol; 2009 Aug; 191(15):4798-806. PubMed ID: 19502406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-Term Survival of Virulent Tularemia Pathogens outside a Host in Conditions That Mimic Natural Aquatic Environments.
    Golovliov I; Bäckman S; Granberg M; Salomonsson E; Lundmark E; Näslund J; Busch JD; Birdsell D; Sahl JW; Wagner DM; Johansson A; Forsman M; Thelaus J
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33397692
    [No Abstract]   [Full Text] [Related]  

  • 11. Susceptibility of immunodeficient mice to aerosol and systemic infection with virulent strains of Francisella tularensis.
    Chen W; KuoLee R; Shen H; Conlan JW
    Microb Pathog; 2004 Jun; 36(6):311-8. PubMed ID: 15120157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Francisella tularensis locus required for spermine responsiveness is necessary for virulence.
    Russo BC; Horzempa J; O'Dee DM; Schmitt DM; Brown MJ; Carlson PE; Xavier RJ; Nau GJ
    Infect Immun; 2011 Sep; 79(9):3665-76. PubMed ID: 21670171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes.
    Gillette DD; Curry HM; Cremer T; Ravneberg D; Fatehchand K; Shah PA; Wewers MD; Schlesinger LS; Butchar JP; Tridandapani S; Gavrilin MA
    Front Cell Infect Microbiol; 2014; 4():45. PubMed ID: 24783062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of TolC Orthologs to
    Kopping EJ; Doyle CR; Sampath V; Thanassi DG
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30670554
    [No Abstract]   [Full Text] [Related]  

  • 15. Impact of Francisella tularensis pilin homologs on pilus formation and virulence.
    Ark NM; Mann BJ
    Microb Pathog; 2011 Sep; 51(3):110-20. PubMed ID: 21605655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse model of oral infection with virulent type A Francisella tularensis.
    KuoLee R; Zhao X; Austin J; Harris G; Conlan JW; Chen W
    Infect Immun; 2007 Apr; 75(4):1651-60. PubMed ID: 17242058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular immune responses to aerosol challenge with Francisella tularensis in mice inoculated with live vaccine candidates of varying efficacy.
    Shen H; Harris G; Chen W; Sjostedt A; Ryden P; Conlan W
    PLoS One; 2010 Oct; 5(10):e13349. PubMed ID: 20967278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of an essential Francisella tularensis subsp. tularensis virulence factor.
    Qin A; Scott DW; Thompson JA; Mann BJ
    Infect Immun; 2009 Jan; 77(1):152-61. PubMed ID: 18981253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of Francisella tularensis with Alveolar Type II Epithelial Cells and the Murine Respiratory Epithelium.
    Faron M; Fletcher JR; Rasmussen JA; Apicella MA; Jones BD
    PLoS One; 2015; 10(5):e0127458. PubMed ID: 26010977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A galU mutant of Francisella tularensis is attenuated for virulence in a murine pulmonary model of tularemia.
    Jayakar HR; Parvathareddy J; Fitzpatrick EA; Bina XR; Bina JE; Re F; Emery FD; Miller MA
    BMC Microbiol; 2011 Aug; 11():179. PubMed ID: 21819572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.