These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23920415)

  • 1. Growing Eremanthus erythropappus in crushed laterite: A promising alternative to topsoil for bauxite-mine revegetation.
    Machado NA; Leite MG; Figueiredo MA; Kozovits AR
    J Environ Manage; 2013 Nov; 129():149-56. PubMed ID: 23920415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of soil texture on nutrients and potentially hazardous elements in Eremanthus erythropappus.
    Figueiredo MA; Leite MG; Kozovits AR
    Int J Phytoremediation; 2016; 18(5):487-93. PubMed ID: 26588605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of the characterization and revegetation of bauxite residues (Red mud).
    Xue S; Zhu F; Kong X; Wu C; Huang L; Huang N; Hartley W
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1120-32. PubMed ID: 25911289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hardwood seedling growth on different mine spoil types with and without topsoil amendment.
    Showalter JM; Burger JA; Zipper CE
    J Environ Qual; 2010; 39(2):483-91. PubMed ID: 20176821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings?
    Huang L; Baumgartl T; Mulligan D
    Ann Bot; 2012 Jul; 110(2):223-38. PubMed ID: 22648878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland.
    Yang SX; Liao B; Li JT; Guo T; Shu WS
    Chemosphere; 2010 Aug; 80(8):852-9. PubMed ID: 20580409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecotoxicological risk assessment of revegetated bauxite residue: Implications for future rehabilitation programmes.
    Di Carlo E; Boullemant A; Courtney R
    Sci Total Environ; 2020 Jan; 698():134344. PubMed ID: 31783438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revegetation strategies for bauxite refinery residue: a case study of Alcan Gove in Northern Territory, Australia.
    Wehr JB; Fulton I; Menzies NW
    Environ Manage; 2006 Mar; 37(3):297-306. PubMed ID: 16456629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng.
    Yan XL; Lin LY; Liao XY; Zhang WB; Wen Y
    Chemosphere; 2013 Oct; 93(4):661-7. PubMed ID: 23871591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant assays and avoidance tests with collembola and earthworms demonstrate rehabilitation success in bauxite residue.
    Finngean G; O'Grady A; Courtney R
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2157-2166. PubMed ID: 29116530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can we build better compost? Use of waste drywall to enhance plant growth on reclamation sites.
    Naeth MA; Wilkinson SR
    J Environ Manage; 2013 Nov; 129():503-9. PubMed ID: 24013559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in soil properties during iron mining and in rehabilitating minelands in the Eastern Amazon.
    Ramos SJ; Gastauer M; Martins GC; Guedes RS; Caldeira CF; Souza-Filho PWM; Siqueira JO
    Environ Monit Assess; 2022 Mar; 194(4):256. PubMed ID: 35257264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage.
    Ribeiro de Souza SC; Adrián López de Andrade S; Anjos de Souza L; Schiavinato MA
    J Environ Manage; 2012 Nov; 110():299-307. PubMed ID: 22831760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris.
    Rufyikiri G; Wannijn J; Wang L; Thiry Y
    Environ Pollut; 2006 Jun; 141(3):420-7. PubMed ID: 16271279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbially-driven strategies for bioremediation of bauxite residue.
    Santini TC; Kerr JL; Warren LA
    J Hazard Mater; 2015 Aug; 293():131-57. PubMed ID: 25867516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Plant Growth-Promoting Bacteria Isolated from Bauxite Residue: The Application for Revegetation.
    Chen L; Cheng Q; Zhang X; Zhu M; Hartley W; Zhu F
    Bull Environ Contam Toxicol; 2022 Jul; 109(1):3-12. PubMed ID: 35067726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant available Al and Na in rehabilitated bauxite residue: a field study assessment.
    Di Carlo E; Boullemant A; Courtney R
    Environ Sci Pollut Res Int; 2020 May; 27(14):17023-17031. PubMed ID: 32146678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation.
    Jana U; Chassany V; Bertrand G; Castrec-Rouelle M; Aubry E; Boudsocq S; Laffray D; Repellin A
    J Environ Manage; 2012 Nov; 110():188-93. PubMed ID: 22789654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tree vegetation and waste amendments to improve the physical condition of copper mine soils.
    Asensio V; Vega FA; Andrade ML; Covelo EF
    Chemosphere; 2013 Jan; 90(2):603-10. PubMed ID: 23026161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mn concentration and mycorrhizal colonization in understory native species grown at areas of manganese mine tailings disposal.
    Silva EFL; Moreira FMS; Siqueira JO
    Int J Phytoremediation; 2019; 21(6):564-576. PubMed ID: 30656960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.