These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23920702)

  • 21. [Algorithms of artificial neural networks--practical application in medical science].
    Stefaniak B; Cholewiński W; Tarkowska A
    Pol Merkur Lekarski; 2005 Dec; 19(114):819-22. PubMed ID: 16521432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A hybrid neural network system for pattern classification tasks with missing features.
    Lim CP; Leong JH; Kuan MM
    IEEE Trans Pattern Anal Mach Intell; 2005 Apr; 27(4):648-53. PubMed ID: 15794170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A system for automated general medical diagnosis using Bayesian networks.
    Zagorecki A; Orzechowski P; Hołownia K
    Stud Health Technol Inform; 2013; 192():461-5. PubMed ID: 23920597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Who works in the prevention and early detection of benign prostatic hyperplasia and prostate cancer in Croatia?].
    Kranjcević K; Marković BB
    Acta Med Croatica; 2007 Feb; 61(1):45-8. PubMed ID: 17593640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring new possibilities for case-based explanation of artificial neural network ensembles.
    Green M; Ekelund U; Edenbrandt L; Björk J; Forberg JL; Ohlsson M
    Neural Netw; 2009 Jan; 22(1):75-81. PubMed ID: 19038532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational tools for the modern andrologist.
    Niederberger C
    J Androl; 1996; 17(5):462-6. PubMed ID: 8957688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. System for selecting relevant information for decision support.
    Kalina J; Seidl L; Zvára K; Grünfeldová H; Slovák D; Zvárová J
    Stud Health Technol Inform; 2013; 186():83-7. PubMed ID: 23542973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine learning algorithms and forced oscillation measurements applied to the automatic identification of chronic obstructive pulmonary disease.
    Amaral JL; Lopes AJ; Jansen JM; Faria AC; Melo PL
    Comput Methods Programs Biomed; 2012 Mar; 105(3):183-93. PubMed ID: 22018532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of prostate cancer by an electronic nose: a proof of principle study.
    Roine A; Veskimäe E; Tuokko A; Kumpulainen P; Koskimäki J; Keinänen TA; Häkkinen MR; Vepsäläinen J; Paavonen T; Lekkala J; Lehtimäki T; Tammela TL; Oksala NK
    J Urol; 2014 Jul; 192(1):230-4. PubMed ID: 24582536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computer technology in detection and staging of prostate carcinoma: a review.
    Zhu Y; Williams S; Zwiggelaar R
    Med Image Anal; 2006 Apr; 10(2):178-99. PubMed ID: 16150630
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of wavelet packet transform and artificial neural networks in analysis and classification of dysphonic voices.
    Crovato CD; Schuck A
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1898-900. PubMed ID: 17926690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of artificial neural networks in prostate cancer.
    Errejon A; Crawford ED; Dayhoff J; O'Donnell C; Tewari A; Finkelstein J; Gamito EJ
    Mol Urol; 2001; 5(4):153-8. PubMed ID: 11790276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human movement onset detection from isometric force and torque measurements: a supervised pattern recognition approach.
    Soda P; Mazzoleni S; Cavallo G; Guglielmelli E; Iannello G
    Artif Intell Med; 2010 Sep; 50(1):55-61. PubMed ID: 20510593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of prostate cancer with MR spectroscopic imaging: an expanded paradigm incorporating polyamines.
    Shukla-Dave A; Hricak H; Moskowitz C; Ishill N; Akin O; Kuroiwa K; Spector J; Kumar M; Reuter VE; Koutcher JA; Zakian KL
    Radiology; 2007 Nov; 245(2):499-506. PubMed ID: 17890357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms.
    Bizios D; Heijl A; Bengtsson B
    J Glaucoma; 2007 Jan; 16(1):20-8. PubMed ID: 17224745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated EEG preprocessing during anaesthesia: new aspects using artificial neural networks.
    Jeleazcov C; Egner S; Bremer F; Schwilden H
    Biomed Tech (Berl); 2004 May; 49(5):125-31. PubMed ID: 15212197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. eXiT*CBR: A framework for case-based medical diagnosis development and experimentation.
    López B; Pous C; Gay P; Pla A; Sanz J; Brunet J
    Artif Intell Med; 2011 Feb; 51(2):81-91. PubMed ID: 20971621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Benign prostatic hyperplasia and prostate cancer: an overview for primary care physicians.
    Sausville J; Naslund M
    Int J Clin Pract; 2010 Dec; 64(13):1740-5. PubMed ID: 21070524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved biliary detection and diagnosis through intelligent machine analysis.
    Logeswaran R
    Comput Methods Programs Biomed; 2012 Sep; 107(3):404-12. PubMed ID: 21194781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions.
    Milenković J; Hertl K; Košir A; Zibert J; Tasič JF
    Artif Intell Med; 2013 Jun; 58(2):101-14. PubMed ID: 23548472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.